890 resultados para glomerulus filtration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glomerular epithelial cells and their intercellular junctions, termed slit diaphragms, are essential components of the filtration barrier in the kidney glomerulus. Nephrin is a transmembrane adhesion protein of the slit diaphragm and a signalling molecule regulating podocyte physiology. In congenital nephrotic syndrome of the Finnish type, mutation of nephrin leads to disruption of the permeability barrier and leakage of plasma proteins into the urine. This doctoral thesis hypothesises that novel nephrin-associated molecules are involved in the function of the filtration barrier in health and disease. Bioinformatics tools were utilized to identify novel nephrin-like molecules in genomic databases, and their distribution in the kidney and other tissues was investigated. Filtrin, a novel nephrin homologue, is expressed in the glomerular podocytes and, according to immunoelectron microscopy, localizes at the slit diaphragm. Interestingly, the nephrin and filtrin genes, NPHS1 and KIRREL2, locate in a head-to-head orientation on chromosome 19q13.12. Another nephrin-like molecule, Nphs1as was cloned in mouse, however, no expression was detected in the kidney but instead in the brain and lymphoid tissue. Notably, Nphs1as is transcribed from the nephrin locus in an antisense orientation. The glomerular mRNA and protein levels of filtrin were measured in kidney biopsies of patients with proteinuric diseases, and marked reduction of filtrin mRNA levels was detected in the proteinuric samples as compared to controls. In addition, altered distribution of filtrin in injured glomeruli was observed, with the most prominent decrease of the expression in focal segmental glomerulosclerosis. The role of the slit diaphragm-associated genes for the development of diabetic nephropathy was investigated by analysing single nucleotide polymorphisms. The genes encoding filtrin, densin-180, NEPH1, podocin, and alpha-actinin-4 were analysed, and polymorphisms at the alpha-actinin-4 gene were associated with diabetic nephropathy in a gender-dependent manner. Filtrin is a novel podocyte-expressed protein with localization at the slit diaphragm, and the downregulation of filtrin seems to be characteristic for human proteinuric diseases. In the context of the crucial role of nephrin for the glomerular filter, filtrin appears to be a potential candidate molecule for proteinuria. Although not expressed in the kidney, the nephrin antisense Nphs1as may regulate the expression of nephrin in extrarenal tissues. The genetic association analysis suggested that the alpha-actinin-4 gene, encoding an actin-filament cross-linking protein of the podocytes, may contribute to susceptibility for diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital nephrotic syndrome of the Finnish type (NPHS1) is an autosomal recessive disease which is highly enriched in the Finnish population. It is caused by mutations in the NPHS1 gene encoding for nephrin, which is a major component of the glomerular filtration barrier in the kidney. Patients with NPHS1 have heavy proteinuria and nephrotic syndrome (NS) from birth and develop renal fibrosis in early childhood. Renal transplantation (TX) is the only curative treatment for NPHS1. These patients form the largest group of pediatric kidney transplant children in our country. The NPHS1 kidneys are removed in infancy and they serve as an excellent human material for studies of the pathophysiology of proteinuric kidney diseases. Sustained proteinuria is a major factor leading to end-stage renal failure and understanding this process is crucial for nephrology. In this study we investigated the glomerular and tubulointerstitial changes that occur in the NPHS1 kidneys during infancy as well as the expression of nephrin in non-renal tissues. We also studied the pathology and management of recurrent proteinuria in kidney grafts transplanted to NPHS1 children. Severe renal lesions evolved in patients with NPHS1 during the first months of life. Glomerular sclerosis developed through progressive mesangial sclerosis, and capillary obliteration was an early consequence of this process. Shrinkage of the glomerular tuft was common, whereas occlusion of tubular opening or protrusion of the glomerular tuft into subepithelial space or through the Bowman's capsule were not detected. Few inflammatory cells were detected in the mesangial area. The glomerular epithelial cells (podocytes) showed severe ultrastructural changes and hypertrophy. Podocyte proliferation and apoptosis were rare, but moderate amounts of podocytes were detached and ended up in the urine. The results showed that endocapillary lesions not extracapillary lesions, as generally believed were important for the sclerotic process in the NPHS1 glomeruli. In the tubulointerstitium, severe lesions developed in NPHS1 kidneys during infancy. Despite heavy proteinuria, tubular epithelial cells (TECs) did not show transition into myofibroblasts. The most abundant chemokines in NPHS1 tissue were neutrophil activating protein-2 (NAP-2), macrophage inhibiting factor (MIF), and monocyte chemoattractant protein-1 (MCP-1). Interstitial inflammation and fibrosis were first detected in the paraglomerular areas and the most abundant inflammatory cells were monocytes/macrophages. Arteries and arterioles showed intimal hypertrophy, but the pericapillary microvasculature remained quite normal. However, excessive oxidative stress was evident in NPHS1 kidneys. The results indicated that TECs were relatively resistant to the heavy tubular protein load. Nephrin was at first thought to be podocyte specific, but some studies especially in experimental animals have suggested that nephrin might also be expressed in non-renal tissues such as pancreas and central nervous system. The knowledge of nephrin biology is important for the evaluation of nephrin related diseases. In our study, no significant amounts of nephrin protein or mRNA were detected in non-renal tissues of man and pig as studied by immunohistochemistry and in situ hybridization. The phenotype analysis of NPHS1 children, who totally lack nephrin, revealed no marked impairment in the neurological, testicular, or pancreatic function speaking against the idea that nephrin would play an important functional role outside the kidney. The NPHS1 kidneys do not express nephrin and antibodies against this major glomerular filter protein have been observed in NPHS1 children after renal TX most likely as an immune reaction against a novel antigen. These antibodies have been associated with the development of recurrent NS in the kidney graft of NPHS1 patients. In our study, a third of the NPHS1 patients homozygous for Fin-Major mutation developed recurrent NS in the transplanted graft. Re-transplantations were performed to patients who lost their graft due to recurrent NS and heavy proteinuria immediately developed in all cases. While 73% of the patients had detectable serum anti-nephrin antibodies, the kidney biopsy findings were minimal. Introduction of plasma exchange (PE) to the treatment of recurrent nephroses increased the remission rate from 54% to 89%. If remission was achieved, recurrent NS did not significantly deteriorate the long term graft function. In conclusion, the results show that the lack of nephrin in podocyte slit diaphragm in NPHS1 kidneys induces progressive mesangial expansion and glomerular capillary obliteration and inflicts interstitial fibrosis, inflammation, and oxidative stress with surprisingly little involvement of the TECs in this process. Nephrin appears to have no clinical significance outside the kidney. Development of antibodies against nephrin seems to be a major cause of recurrent NS in kidney grafts of NPHS1 patients and combined use of PE and cyclophosphamide markedly improved remission rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flocculation and filtration characteristics of typical Indian iron ore fines have been studied using starch as flocculant in the presence of an inorganic electrolyte, namely calcium chloride. The effect of various parameters such as pH, starch and calcium chloride concentrations and pulp density on the settling and filtration rates, turbidity of the supernatant and on residual starch and calcium ion concentrates has been investigated through a statistical design and analysis approach and subsequently optimised on a laboratory scale. The adsorption mechanisms of starch onto haematite have been elucidated through adsorption density measurements, infrared and X-ray photoelectron spectroscopic techniques. The rheological property of the polymer solutions of relevance to flocculations has also been investigated. Further, the role of metal ion-starch interactions in the bulk solution, has been studied. In order to understand the nature of polymer adsorption at the double-layer, electrokinetic studies have been carried out with the iron ore mineral samples using starch and calcium chloride. Based on the above findings, selective floculaation tests on artificial mixtures of iron ore minerals have been carried out to determine the separation efficiencies from the view point of alumina and silica removal from haematite as well as the control of alumina: silica ratio in Indian iron ores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for some of the many physical-chemical and biological processes in intermittent sand filtration of wastewaters is described and an expression for oxygen transfer is formulated.

The model assumes that aerobic bacterial activity within the sand or soil matrix is limited, mostly by oxygen deficiency, while the surface is ponded with wastewater. Atmospheric oxygen reenters into the soil after infiltration ends. Aerobic activity is resumed, but the extent of penetration of oxygen is limited and some depths may be always anaerobic. These assumptions lead to the conclusion that the percolate shows large variations with respect to the concentration of certain contaminants, with some portions showing little change in a specific contaminant. Analyses of soil moisture in field studies and of effluent from laboratory sand columns substantiated the model.

The oxygen content of the system at sufficiently long times after addition of wastes can be described by a quasi-steady-state diffusion equation including a term for an oxygen sink. Measurements of oxygen content during laboratory and field studies show that the oxygen profile changes only slightly up to two days after the quasi-steady state is attained.

Results of these hypotheses and experimental verification can be applied in the operation of existing facilities and in the interpretation of data from pilot plant-studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A incidência de doenças renais crônicas está aumentando no mundo, e há uma grande necessidade de identificar as terapias capazes de deter ou reduzir a progressão da doença. Há crescente evidência clínica e experimental de que as estatinas poderiam desempenhar um papel terapêutico. Recentes estudos clínicos e experimentais têm mostrado que as estatinas têm "efeitos pleiotrópicos", além da modulação lipídica. Estudos têm avaliado os efeitos das estatinas sobre a progressão da doença renal crônica, mas os resultados são controversos. Estudos ultra-estruturais em humanos e em ratos demonstraram a presença de junções GAP dentro de todas as células do glomérulo e os podocitos demonstraram conter principalmente conexina-43 (Cx-43). O presente estudo tem como objetivo observar os efeitos da rosuvastatina na estrutura e ultra-estrutura renal e a expressão glomerular de Cx-43 em ratos normotensos (WKY) e em ratos espontaneamente hipertensos (SHR). O foco do estudo foi avaliar os efeitos pleiotrópicos da rosuvastatina em rins de animais hipertensos normocolesterolêmicos. Os ratos foram divididos aleatoriamente em quatro grupos: WKY-C: animais normotensos que não receberam rosuvastatina; WKY-ROS: animais normotensos que receberam rosuvastatina 20mg/kg/dia por gavagem orogástrica; SHR-C: animais hipertensos que não receberam rosuvastatina; SHR-ROS: animais hipertensos que receberam rosuvastatina, como descrito no grupo WKY-ROS. Os animais dos grupos SHR-C e SHR-ROS apresentaram níveis de pressão arterial maiores que os animais dos grupos WKY-C e WKY-Ros. A massa corporal dos grupos de animais não diferiram significativamente durante o experimento. Não houve diferença nos níveis sanguíneos de uréia, creatinina, ácido úrico e creatinafosfoquinase entre os animas dos grupos estudados. No entanto, houve um aumento da excreção de proteína de 24 horas nos animais do grupo SHR-C. Houve um aumento na área capsular nos animais do grupo SHR-C. Por microscopia eletrônica de transmissão observou-se que nos animais SHR-C a barreira de filtração glomerular, o diafragma de fenda e os podócitos estão alterados exibindo os vacúolos nos podócitos e pedicelos mais curtos e mais espessos. Por microscopia eletrônica de varredura, os animais SHR-C exibiram pedicelos mais afilados, curtos e tortuosos. Um aumento da imunofluorescência para Cx-43 foi observada em células epiteliais viscerais dos glomérulos dos animais do grupo WKY-ROS e nas células parietais e viscerais dos glomérulos dos animais do grupo SHR-ROS, se comparado com os grupos WKY-C e SHR-C. Em conclusão, podemos supor que o efeito pleiotrópico renal da rosuvastatina pode ser uma ferramenta terapêutica para melhorar a estrutura e conseqüentemente a função renal em indivíduos hipertensos.