846 resultados para generalized linear models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To discuss generalized estimating equations as an extension of generalized linear models by commenting on the paper of Ziegler and Vens "Generalized Estimating Equations. Notes on the Choice of the Working Correlation Matrix". Methods Inviting an international group of experts to comment on this paper. Results Several perspectives have been taken by the discussants. Econometricians have established parallels to the generalized method of moments (GMM). Statisticians discussed model assumptions and the aspect of missing data Applied statisticians; commented on practical aspects in data analysis. Conclusions In general, careful modeling correlation is encouraged when considering estimation efficiency and other implications, and a comparison of choosing instruments in GMM and generalized estimating equations, (GEE) would be worthwhile. Some theoretical drawbacks of GEE need to be further addressed and require careful analysis of data This particularly applies to the situation when data are missing at random.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Probability models on permutations associate a probability value to each of the permutations on n items. This paper considers two popular probability models, the Mallows model and the Generalized Mallows model. We describe methods for making inference, sampling and learning such distributions, some of which are novel in the literature. This paper also describes operations for permutations, with special attention in those related with the Kendall and Cayley distances and the random generation of permutations. These operations are of key importance for the efficient computation of the operations on distributions. These algorithms are implemented in the associated R package. Moreover, the internal code is written in C++.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large margin criteria and discriminative models are two effective improvements for HMM-based speech recognition. This paper proposed a large margin trained log linear model with kernels for CSR. To avoid explicitly computing in the high dimensional feature space and to achieve the nonlinear decision boundaries, a kernel based training and decoding framework is proposed in this work. To make the system robust to noise a kernel adaptation scheme is also presented. Previous work in this area is extended in two directions. First, most kernels for CSR focus on measuring the similarity between two observation sequences. The proposed joint kernels defined a similarity between two observation-label sequence pairs on the sentence level. Second, this paper addresses how to efficiently employ kernels in large margin training and decoding with lattices. To the best of our knowledge, this is the first attempt at using large margin kernel-based log linear models for CSR. The model is evaluated on a noise corrupted continuous digit task: AURORA 2.0. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal