988 resultados para gene construct


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two transgenic callus lines of rice, stably expressing a β-glucuronidase (GUS) gene, were supertransformed with a set of constructs designed to silence the resident GUS gene. An inverted-repeat (i/r) GUS construct, designed to produce mRNA with self-complementarity, was much more effective than simple sense and antisense constructs at inducing silencing. Supertransforming rice calluses with a direct-repeat (d/r) construct, although not as effective as those with the i/r construct, was also substantially more effective in silencing the resident GUS gene than the simple sense and antisense constructs. DNA hybridisation analyses revealed that every callus line supertransformed with either simple sense or antisense constructs, and subsequently showing GUS silencing, had the silence-inducing transgenes integrated into the plant genome in inverted-repeat configurations. The silenced lines containing i/r and d/r constructs did not necessarily have inverted-repeat T-DNA insertions. There was significant methylation of the GUS sequences in most of the silenced lines but not in the unsilenced lines. However, demethylation treatment of silenced lines with 5-azacytidine did not reverse the post-transcriptional gene silencing (PTGS) of GUS. Whereas the levels of RNA specific to the resident GUS gene were uniformly low in the silenced lines, RNA specific to the inducer transgenes accumulated to a substantial level, and the majority of the i/r RNA was unpolyadenylated. Altogether, these results suggest that both sense- and antisense-mediated gene suppression share a similar molecular basis, that unpolyadenylated RNA plays an important role in PTGS, and that methylation is not essential for PTGS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GPV is a Chinese serotype isolate of barley yellow dwarf virus (BYDV) that has no reaction with antiserum of MAV, PAV, SGV, RPV and RMV The sequence of the coat protein (CP) of GPV isolate of BYDV was identified and its amino acid sequence was deduced. The coding region for the putative GPV CP is 603 bases nucleotides and encodes a Mr 22 218 (22 ku) protein. The same as MAV, PAV and RPV, GPV contained a second ORF within the coat protein coding region. This protein of 17 024 Mr (17 ku) is thought to correspond to the Virion protein genome linked (Vpg). Sequence comparisons of the CP coding region between the GPV isolate of BYDV and other isolates of BYDV have been done. The nucleotide and amino acid sequence homology of GPV has a greater identity to the sequence of RPV than those of PAV and MAV. The GPV CP sequence stored 83.7% of nucleotide similarity and 77.5% of deduced amino acid similarity, whereas that of the PAV and MAV shared 56.9%, 53.2% and 44.1%, 43.8% respectively. According to BYDV-GPV CP sequence, two primers were designed. The cDNA of CP was produced by RT-PCR. Full-length cDNA of CP was inserted into plasmid to construct expression plasmids named pPPI1, pPPI2 and pPPI5 based on different promoters. The recombinant plasmids were identified by using α-32P-dATP labelled CP probe, α-32P-ATP labelled GPV RNA probe and sequencing to confirm real GPV CP gene cDNA in plasmids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n=14 and 2n=22 ancestral marsupial karyotype. RESULTS: We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n=14) and therian mammal (2n=19) karyotypes to be reconstructed. CONCLUSIONS: Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n=14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient expression is a powerful method for the functional characterization of genes. In this chapter, we outline a protocol for the transient expression of constructs in Medicago truncatula leaves using Agrobacterium tumefaciens infiltration. Using quantitative real-time PCR we demonstrate that the infiltration of a construct containing the LEGUME ANTHOCYANIN PRODUCTION 1 (LAP1) transcription factor results in the strong upregulation of key biosynthetic genes and the accumulation of anthocyanin pigment in the leaves after just 3 days. Thus, this method provides a rapid and powerful way to the discovery of downstream targets of M. truncatula transcription factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perceived impaired control over alcohol use is a key cognitive construct in alcohol dependence that has been related prospectively to treatment outcome and may mediate the risk for problem drinking conveyed by impulsivity in non-dependent drinkers. The aim of the current study was to investigate whether perceived impaired control may mediate the association between impulsivity-related measures (derived from the Short-form Eysenck Personality Questionnaire-Revised) and alcohol-dependence severity in alcohol-dependent drinkers. Furthermore, the extent to which this hypothesized relationship was moderated by genetic risk (Taq1A polymorphism in the DRD2/ANKK1 gene cluster) and verbal fluency as an indicator of executive cognitive ability (Controlled Oral Word Association Test) was also examined. A sample of 143 alcohol-dependent inpatients provided an extensive clinical history of their alcohol use, gave 10ml of blood for DNA analysis, and completed self-report measures relating to impulsivity, impaired control and severity of dependence. As hypothesized, perceived impaired control (partially) mediated the association between impulsivity-related measures and alcohol-dependence severity. This relationship was not moderated by the DRD2/ANKK1 polymorphism or verbal fluency. These results suggest that, in alcohol dependence, perceived impaired control is a cognitive mediator of impulsivity-related constructs that may be unaffected by DRD2/ANKK1 and neurocognitive processes underlying the retrieval of verbal information

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-suppression of transgenes and their homologous viral sequences by RNA silencing is a powerful strategy for achieving high-level virus resistance in plants. This review provides a brief overview of RNA silencing mechanisms in plants and discusses important transgene construct design features underpinning successful RNA silencing-mediated transgenic virus control. Application of those strategies to protect horticultural and field crops from virus infection and results of field tests are also provided. The effectiveness and stability of RNA-mediated transgenic resistance are assessed taking into account effects of viral, plant and environmental factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The removal of non-coding sequences, introns, is an essential part of messenger RNA processing. In most metazoan organisms, the U12-type spliceosome processes a subset of introns containing highly conserved recognition sequences. U12-type introns constitute less than 0,5% of all introns and reside preferentially in genes related to information processing functions, as opposed to genes encoding for metabolic enzymes. It has previously been shown that the excision of U12-type introns is inefficient compared to that of U2-type introns, supporting the model that these introns could provide a rate-limiting control for gene expression. The low efficiency of U12-type splicing is believed to have important consequences to gene expression by limiting the production of mature mRNAs from genes containing U12-type introns. The inefficiency of U12-type splicing has been attributed to the low abundance of the components of the U12-type spliceosome in cells, but this hypothesis has not been proven. The aim of the first part of this work was to study the effect of the abundance of the spliceosomal snRNA components on splicing. Cells with a low abundance of the U12-type spliceosome were found to inefficiently process U12-type introns encoded by a transfected construct, but the expression levels of endogenous genes were not found to be affected by the abundance of the U12-type spliceosome. However, significant levels of endogenous unspliced U12-type intron-containing pre-mRNAs were detected in cells. Together these results support the idea that U12-type splicing may limit gene expression in some situations. The inefficiency of U12-type splicing has also promoted the idea that the U12-type spliceosome may control gene expression, limiting the mRNA levels of some U12-type intron-containing genes. While the identities of the primary target genes that contain U12-type introns are relatively well known, little has previously been known about the downstream genes and pathways potentially affected by the efficiency of U12-type intron processing. Here, the effects of U12-type splicing efficiency on a whole organism were studied in a Drosophila line with a mutation in an essential U12-type spliceosome component. Genes containing U12-type introns showed variable gene-specific responses to the splicing defect, which points to variation in the susceptibility of different genes to changes in splicing efficiency. Surprisingly, microarray screening revealed that metabolic genes were enriched among downstream effects, and that the phenotype could largely be attributed to one U12-type intron-containing mitochondrial gene. Gene expression control by the U12-type spliceosome could thus have widespread effects on metabolic functions in the organism. The subcellular localization of the U12-type spliceosome components was studied as a response to a recent dispute on the localization of the U12-type spliceosome. All components studied were found to be nuclear indicating that the processing of U12-type introns occurs within the nucleus, thus clarifying a question central to the field. The results suggest that the U12-type spliceosome can limit the expression of genes that contain U12-type introns in a gene-specific manner. Through its limiting role in pre-mRNA processing, the U12-type splicing activity can affect specific genetic pathways, which in the case of Drosophila are involved in metabolic functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A positive cis-acting DNA element in the near 5'-upstream region of the CYP2B1/B2 genes in rat liver was found to play an important role in the transcription of these genes. An oligonucleotide covering -69 to -98 nt mimicked the gel mobility shift pattern given by the fragment -179 to +29 nt, which was earlier found adequate to confer the regulatory features of this gene. Two major complexes were seen, of which the slower and faster moving complexes became intense under uninduced and Phenobarbitone-induced conditions respectively. Minigene cloned DNA plasmid covering -179 to +181 nt in pUC 19 and Bal 31 mutants derived from this parent were transcribed in whole nuclei and cell free transcription extracts and mutants containing only upto -75 nt of the upstream were poorly transcribed. Transcription extracts from phenobarbitone-injected rat liver nuclei were significantly more active than extracts from uninduced rats in transcribing the minigene constructs. Addition of the oligonucleotide (-69 to -98nt) specifically inhibited the transcription of the minigene construct (-179 to +181 nt) in the cell free transcription system. It is therefore, concluded that the region -69 to -98 nt acts as a positive cis-acting element in the transcription of the CYP2B1/B2 genes and in mediating the inductive effects of phenobarbitone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and phosphorylation of protein factor(s) that bind to the positivecis-acting element (−69 to −98 nt) of the CYP2B1/B2 gene have been examinedin vivoin the rat. Treatment of rats with cycloheximide, a protein synthetic inhibitor, suppresses basal as well as phenobarbitone-induced levels of CYP2B1/B2 mRNA and its run-on transcription. Under these conditions, complex formation of the nuclear extract with the positive element is also inhibited, as judged by gel shift assays. Treatment of rats with 2-aminopurine, a general protein kinase inhibitor, blocks the phenobarbitone-mediated increase in CYP2B1/B2 mRNA, cell-free transcription of a minigene construct containing the positive element, pP450e179DNA, and binding of nuclear proteins to the positive element. Treatment of rats with okadaic acid, a protein phosphatase inhibitor, mimics the effects of phenobarbitone, but only partially. Thus, both phenobarbitone and okadaic acid individually enhance binding of the nuclear protein(s) to the positive element, cell-free transcription of the minigene construct, and phosphorylation of the not, vert, similar26- and 94-kDa proteins binding to the positive element. But unlike phenobarbitone, okadaic acid is not an inducer of CYP2B1/B2 mRNA or its run-on transcription. Thus, phenobarbitone-responsive positive element interactions constitute only a minimal requirement, and okadaic acid is perhaps not able to bring about the total requirement for activation of CYP2B1/B2 gene transcription that should include interaction between the minimal promoter and further upstream elements. An intriguing feature is the antagonistic effect of okadaic acid on phenobarbitone-mediated effects on CYP2B1/B2 mRNA levels, cell-free and run-on transcription, and nuclear protein binding to the positive element. The reason for this antagonism is not clear. It is concluded that phenobarbitone treatment enhancesin vivothe synthesis and phosphorylation of protein factors binding to the positive element and these constitute a minimal requirement for the transcriptional activation of the CYP2B1/B2 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The author has constructed a synthetic gene for ∝-lytic protease. Since the DNA sequence of the protein is not known, the gene was designed by using the reverse translation of ∝-lytic protease's amino acid sequence. Unique restriction sites are carefully sought in the degenerate DNA sequence to aid in future mutagenesis studies. The unique restriction sites are designed approximately 50 base pairs apart and their appropriate codons used in the DNA sequence. The codons used to construct the DNA sequence of ∝-lytic protease are preferred codons in E-coli or used in the production of β-lactamase. Codon usage is also distributed evenly to ensure that one particular codon is not heavily used. The gene is essentially constructed from the outside in. The gene is built in a stepwise fashion using plasmids as the vehicles for the ∝-lytic oligomers. The use of plasmids allows the replication and isolation of large quantities of the intermediates during gene synthesis. The ∝-lytic DNA is a double-stranded oligomer that has sufficient overhang and sticky ends to anneal correctly in the vector. After six steps of incorporating ∝-lytic DNA, the gene is completed and sequenced to ensure that the correct DNA sequence is present and that no mutations occurred in the structural gene.

β-lactamase is the other serine hydrolase studied in this thesis. The author used the class A RTEM-1 β- lactamase encoded on the plasmid pBR322 to investigate the roll of the conserved threonine residue at position 71. Cassette mutagenesis was previously used to generate all possible amino acid substitutions at position 71. The work presented here describes the purification and kinetic characterization of a T71H mutant previously constructed by S. Schultz. The mutated gene was transferred into plasmid pJN for expression and induced with IPTG. The enzyme is purified by column chromatography and FPLC to homogeneity. Kinetic studies reveal that the mutant has lower k_(cat) values on benzylpenicillin, cephalothin and 6-aminopenicillanic acid but no changes in k_m except for cephalothin which is approximately 4 times higher. The mutant did not change siginificantly in its pH profile compared to the wild-type enzyme. Also, the mutant is more sensitive to thermal denaturation as compared to the wild-type enzyme. However, experimental evidence indicates that the probable generation of a positive charge at position 71 thermally stabilized the mutant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sequences of the mitochondrial ND4 gene (1339 bp) and the ND4L gene (290 bp) were determined for all the 14 extant taxa of the Drosophila nasuta subgroup The average A + T content of ND4 genes is 76.5% and that of ND4L genes is 83.5%. A total of 114 variable sites were scored. The ND4 gene sequence divergence ranged from 0 to 5.4% within the subgroup. The substitution rate of the ND4 gene is about 1.25% per million years. The base substitution of the genesis strongly transition biased. Neighbor-joining and parsimony were used to construct a phylogeny based on the resultant sequence data set. According to these trees, five, distinct mtDNA clades can be identified. D. niveifrons represents the most diverged lineage. D, sulfurigaster bilimbata and D. kepulauana form two independent lineages. The other two clades are the kohkoa complex and the albomicans complex. The Kohkoa complex consists of D. sulfurigaster sulfurigaster, D. pulaua, D. kohkoa, and Taxon-F. The albomicans complex can be divided into two groups: D. nasuta, D. sulfurigaster neonasuta, D. sulfurigaster albostrigata, and D.. albomicans from Chiangmai form one group; and D. pallidifrons, Taxon-I, Taxon-J, and D. albomicans from China form the other group. High genetic differentiation was found among D. albomicans populations. Based on our phylogenetic results, we hypothesize that D. niveifrons diverged first from the D, nasuta subgroup in Papua New Guinea about 3.5 Mya. The ancestral population spread to the north and when it reached Borneo, it diversified sequentially into the kohkoa complex, D. s. bilimbata, and D. kepulauana. About 1 Mya, another radiation occurred when the ancestral populations reached the Indo-China Peninsula, forming the albomicans complex. Discrepancy between morphological groupings and phylogenetic results suggests that the male morphological traits may not be orthologous. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grass carp hemorrhagic virus (GCHV)-induced gene 2 (Gig2) is a novel gene previously identified from UV-inactivated GCHV-treated Carassius auratus blastulae embryonic (CAB) cells, suggesting that it should play a pivotal role in the interferon (IFN) antiviral response. In this study, a polyclonal anti-Gig2 antiserum was generated and used to study the inductive expression pattern by Western blot analysis, showing no basal expression in normal CAB cells but a significant up-regulation upon UV-inactivated GCHV, polyinosinic:polycytidylic acid (Poly I:Q and recombinant IFN (rIFN). However, constitutive expression of Gig2 is observed in all tested tissues from grass carp (Ctenopharyngodon idellus), and Poly I:C injection increases the relative amount of Gig2 protein in skin, spleen, trunk kidney, gill, hindgut and thymus. Moreover, the genomic sequence covering the whole Gig2 ORF and the upstream promoter region were amplified by genomic walking. Significantly, the Gig2 promoter contains three IFN-stimulated response elements (ISREs), nine GAAA/TfTC motifs and five gamma-IFN activating sites (GAS), which are the characteristics of genes responsive to both type I IFN and type 11 IFN. Subsequently, the complete Gig2 promoter sequence was cloned into pGL3-Basic vector, and its activity was measured by luciferase assays in the transfected CAB cells. The Gig2 promoter-driven construct is highly induced in CAB cells after treatment with Poly I:C or rIFN, and the functional capability is dependent on IFN regulatory factor 7 (IRF7), because its activity can be stimulated by IRF7. Collectively, the data provide strong evidence that Gig2 is indeed a novel IFN inducible gene and its expression is likely dependent on IRF7 upon Poly I:C or IFN. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using conserved primers and the PCR reaction, the growth hormone (GH) gene and the 3'-UTR of the large yellow croaker (Pseudosciaena crocea) were amplified and sequenced. The gene structure was analyzed and compared to the GH genes of 5 other percoid fish downloaded from Genbank. Also the GH gene of the large yellow croaker and the genes from 14 Percoidei and 2 Labroidei species were aligned using Clustal X. A matrix of 564 bp was used to construct the phylogenetic tree using maximum parsimony and neighbor-joining methods. Phylogenetic trees by the two methods are identical in most of the clades with high bootstrap support. The results are also identical to those from morphological data. In general, this analysis does not support the monophyly of the families Centropomidae and Carangidae. But our GH gene tree indicates that the representative species of the families Sparidae and Sciaenidae are a monophyletic group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first successful case of transgenic fish was achieved in 1984. It is in a model system that the integration and expression of recombinant human growth hormone (hGH) in host red common carp (Cyprinus carpio, red var.) have been thoroughly studied. Recently, the integration sites have been recovered and characterized. Compared with non-transgenic peers, hGH-transgenic fish are prior in dietary utilization and growth performance. In view of bio-safety and bio-ethics, an "all-fish" construct CAgcGH, grass carp growth hormone fused with common carp P-actin promoter, has been generated and transferred into Yellow River carp (C carpio, local strain in Yellow River) fertilized eggs. Under middle-scale trial, CAgcGH-transgenics show higher growth rate and food conversion efficiency than the controls, which is consistent to laboratory findings. To avoid the potential impact of transgenic fish on the environment, a sterile strain of transgenic triploid fish has been successfully produced. The "all-fish" transgenic common carp is also approved safe enough as daily food, according to a test based on the pathological principles of new medicines issued by the Ministry of Health of China. The "all-fish" transgenic common carp with growth enhancement is now ready for market, but looking for governmental authorization. (C) 2003 Editions scientifiques et medicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved.