138 resultados para framtvingad slump


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-consolidating concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work conditions and also reduce the impact on the environment by elimination of the need for compaction. This investigation aimed at exploring the potential use of the neurofuzzy (NF) approach to model the fresh and hardened properties of SCC containing pulverised fuel ash (PFA) as based on experimental data investigated in this paper. Twenty six mixes were made with water-to-binder ratio ranging from 0.38 to 0.72, cement content ranging from 183 to 317 kg/m3 , dosage of PFA ranging from 29 to 261 kg/m3 , and percentage of superplasticizer, by mass of powder, ranging from 0 to 1%. Nine properties of SCC mixes modeled by NF were the slump flow, JRing combined to the Orimet, JRing combined to cone, V-funnel, L-box blocking ratio, segregation ratio, and the compressive strength at 7, 28, and 90 days. These properties characterized the filling ability, the passing ability, the segregation resistance of fresh SCC, and the compressive strength. NF model is constructed by training and testing data using the experimental results obtained in this study. The results of NF models were compared with experimental results and were found to be quite accurate. The proposed NF models offers useful modeling approach of the fresh and hardened properties of SCC containing PFA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing need to identify the effect of mix composition on the rheological properties of composite cement pastes using simple tests to determine the fluidity, the cohesion and other mechanical properties of grouting applications such as compressive strength. This paper reviews statistical models developed using a fractional factorial design which was carried out to model the influence of key parameters on properties affecting the performance of composite cement paste. Such responses of fluidity included mini-slump, flow time using Marsh cone and cohesion measured by Lombardi plate meter and unit weight, and compressive strength at 3 d, 7 d and 28 d. The models are valid for mixes with 0.35 to 0.42 water-to-binder ratio (W/B), 10% to 40% of pulverised fuel ash (PFA) as replacement of cement by mass, 0.02 to 0.06% of viscosity enhancer admixture (VEA), by mass of binder, and 0.3 to 1.2% of superplasticizer (SP), by mass of binder. The derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of composite cement paste are presented. Such parameters can be useful to reduce the test protocol needed for proportioning of composite cement paste. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods which are highlighted. The multi parametric optimization is used in order to establish isoresponses for a desirability function of cement composite paste. Results indicate that the replacement of cement by PFA is compromising the early compressive strength and up 26%, the desirability function decreased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explores using artificial neural networks to predict the rheological and mechanical properties of underwater concrete (UWC) mixtures and to evaluate the sensitivity of such properties to variations in mixture ingredients. Artificial neural networks (ANN) mimic the structure and operation of biological neurons and have the unique ability of self-learning, mapping, and functional approximation. Details of the development of the proposed neural network model, its architecture, training, and validation are presented in this study. A database incorporating 175 UWC mixtures from nine different studies was developed to train and test the ANN model. The data are arranged in a patterned format. Each pattern contains an input vector that includes quantity values of the mixture variables influencing the behavior of UWC mixtures (that is, cement, silica fume, fly ash, slag, water, coarse and fine aggregates, and chemical admixtures) and a corresponding output vector that includes the rheological or mechanical property to be modeled. Results show that the ANN model thus developed is not only capable of accurately predicting the slump, slump-flow, washout resistance, and compressive strength of underwater concrete mixtures used in the training process, but it can also effectively predict the aforementioned properties for new mixtures designed within the practical range of the input parameters used in the training process with an absolute error of 4.6, 10.6, 10.6, and 4.4%, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall elements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish. This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a column. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 rnm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured. The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superphsticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applications such as soil, rock and oil-well grouting all require enormous amounts of cement and are good examples of areas where a high volume of fly ash could partially replace cement to produce low-cost, environmentally safe and durable concrete. There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater grouts such as washout resistance and compressive strength. This paper presents statistical models developed using a fractorial design which was carried out to model the influence of key parameters on properties affecting the performance of underwater grout. Such responses of fluidity included mini-slump and flow time measured by Marsh cone, washout resistance, unit weight and compressive strength. The models are valid for mixes with 0.40 to 0.60 water-to-cementitious materials ratio, 0.02 to 0.08% of anti-washout admixture, by mass of binder, and 0.6 to 1.8% of superplasticizer, by mass of cementitious materials. The grout was made with 50% of pulverized-fuel ash replacement, by mass ofcementitious materials. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper highlighted the influence of W/CM and dosage of antiwashout admixture and superplasticizer on fluidity, washout resistance and compressive strength and attempted also to demonstrate the usefulness of the models to improve understanding of trade-offs between parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The underwater casting of relatively thin lifts of concrete in water requires the proportioning of highly flowable concrete that can resist water dilution and segregation and spread readily into place. An investigation was carried out to determine the effects of antiwashout admixture concentration, water-cementitious materials ratio, and binder composition on the washout resistance of highly flowable concrete. Two main types of antiwashout admixtures were used: 1) a powdered welan gum at concentrations of 0.07 and 0.15% (by mass of binder); and 2) a liquid-based cellulosic admixture with dosages up to 1.65 L/100 kg of binder. The water-cementitious materials ratios were set at 0.41 and 0.47, corresponding to high-quality underwater concrete. Four binder compositions were used: a standard Canadian Type 10 cement, the same cement with 10% silica fume replacement, the cement with 50% granulated blast-furnace slag replacement, and a ternary cement containing 6% silica fume and 20% Class F fly ash. The concentrations of anti-washout admixture have direct impact on washout resistance. For a given washout loss, greater slump flow consistency can be achieved with the increases in anti-washout admixture concentration and decreases in water-binder ratio. The washout mass loss can be reduced, for a given consistency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete used for underwater repair is often proportioned to spread readily into place and self-consolidate, and to develop high resistance to segregation and water dilution. An investigation was carried out to determine the effect of the dosage of antiwashout admixture, water-cementitious materials ratio (w/cm), and binder composition on the relative residual strength of highly flowable underwater concrete. Two types of antiwashout admixtures were used: a powdered welan gum at 0.07 and 0.15% by mass of binder, and a liquid-based cellulosic admixture employed at a high dosage of 1 to 1.65 L/100 kg of cementitious materials. The w/cms were set at 0.41 and 0.47 to secure adequate performance of underwater concrete for construction and repair. Four binder compositions were used: a Canadian Type 10 cement; a cement with 10% silica fume replacement; a cement with 50% replacement of granulated blast-furnace slag; and a ternary binder containing 6% silica fume and 20% Class F fly ash. Test results indicate that for a given washout mass loss and slump flow consistency, greater relative residual strength can be secured when the dosage of antiwashout admixture is increased, the w/cm is reduced, and a binary binder with 10% silica fume substitution or the ternary binder are employed. Such mixtures can develop relative residual compressive strengths of 85 and 80%, compared to mixtures cast in air, when the value of washout loss is limited to 4 and 6% for mixtures with slump flow values of 450 and 550 mm, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete placed under water should be proportioned to flow readily into place with minimum materials separation. Unlike concrete cast for deep tremie seals, the use of concrete in repairs often necessitates some free fall of the mixture through water. Such placement conditions lead to greater risk of water erosion and segregation, and should be addressed in proportioning highly flowable underwater concrete. This paper evaluates the effect of free-fall height (FFH) of concrete through water on resulting in-place properties. Concrete was cast in blocks measuring 0.54 x 0.44 x 1 m with the initial FFH in water ranging between 0.25 and 0.60 m. In-place compressive and splitting tensile strengths, unit weight, and depth of washed-out and sedimentation materials were determined. In total, 24 highly flowable mixtures with slump flows greater than 500 mm were investigated. The evaluated mixtures were prepared with various hydraulic binders, including conventional Type 10 cement, a binary mixture with 10% of silica fume (SF), and a ternary binder incorporating 20% of fly ash (FA) and 6% of SF. The mixtures were proportioned with water-binder ratios (w/b) ranging between 0.41 and 0.47. Test results show that the increase of FFH of fresh concrete in water can greatly decrease the residual strength and significantly increase the thickness of washed out and sedimentation materials. The incorporation of 10% of SF, or 20% of FA and 6% of SF, and the reduction of the w/b from 0.47 to 0.41 can, however, lead to a significant increase in washout resistance and residual strength. A relationship between residual strength and the coupled factor of free-fall drop of concrete in water and washout resistance is established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of artificial neural network (ANN) models to predict the rheological behavior of grouts is described is this paper and the sensitivity of such parameters to the variation in mixture ingredients is also evaluated. The input parameters of the neural network were the mixture ingredients influencing the rheological behavior of grouts, namely the cement content, fly ash, ground-granulated blast-furnace slag, limestone powder, silica fume, water-binder ratio (w/b), high-range water-reducing admixture, and viscosity-modifying agent (welan gum). The six outputs of the ANN models were the mini-slump, the apparent viscosity at low shear, and the yield stress and plastic viscosity values of the Bingham and modified Bingham models, respectively. The model is based on a multi-layer feed-forward neural network. The details of the proposed ANN with its architecture, training, and validation are presented in this paper. A database of 186 mixtures from eight different studies was developed to train and test the ANN model. The effectiveness of the trained ANN model is evaluated by comparing its responses with the experimental data that were used in the training process. The results show that the ANN model can accurately predict the mini-slump, the apparent viscosity at low shear, the yield stress, and the plastic viscosity values of the Bingham and modified Bingham models of the pseudo-plastic grouts used in the training process. The results can also predict these properties of new mixtures within the practical range of the input variables used in the training with an absolute error of 2%, 0.5%, 8%, 4%, 2%, and 1.6%, respectively. The sensitivity of the ANN model showed that the trend data obtained by the models were in good agreement with the actual experimental results, demonstrating the effect of mixture ingredients on fluidity and the rheological parameters with both the Bingham and modified Bingham models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of an experimental investigation carried out to evaluate the influence of Bauxsol, an artificially neutralised bauxite refinery residue (NBRR), on various properties of cement pastes. It was found that the NBRR does not have any pozzolanic properties and hence cannot be used as a supplementary cementitious material in concrete. In order to evaluate the effect of adding the product to Portland cement (PC) pastes, fresh properties (i.e. standard consistency and slump), setting time and heat of hydration were measured. In addition, its influence on chemical changes and compressive strength was investigated. It was found that the addition of this NBRR resulted in a decrease in compressive strength beyond 7 days. The setting time decreased with an increase in NBRR content in PC pastes. The rate of heat evolution for NBRR pastes was greater than that of the PC pastes, but a corresponding increase in the quantity of calcium hydroxide was not found. Therefore, it was concluded that unidentified hydration products when Bauxsol was used in PC pastes might have been the reason for the decrease in setting times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of incorporating pulverized fuel ash (PFA) and ground granulated blastfurnace slag (ggbs) on the workability (slump), adiabatic temperature rise during hydration and long-term (up to 570 days) strength of high-strength concretes have been measured. Binary (PFA/ggbs and Portland cement) and ternary (PFA/ggbs plus microsilica and Portland cement) blends at water-binder ratios from 0.38 to 0.20 have been tested. The results show broadly similar effects to those in lower strength concrete, although of differing magnitude in some cases. Some potential advantages of ternary blends for optimization of properties have been demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to optimise the rheological parameters, hardened properties, and setting times of cement grouts containing metakaolin (MTK), viscosity-modifying agent (VMA) and superplasticiser (SP). All mixes were made with water-to-binder ratio (W/B) of 0.40. The replacement of cement by MTK was varied from 6% to 20% (by mass), and dosages of SP and VMA were varied from 0.3% to 1.4%, and 0.01% and 0.06% (by mass of binder), respectively. Increased SP led to an increase in fluidity, reduction in flow time, plate cohesion, rheological parameters, and an increase in the setting times. Increased VMA demonstrated a reduction in fluidity, an increase in Marsh cone time, plate cohesion, yield stress, and plastic viscosity. Results indicate that the use of MTK increased yield stress, plastic viscosity, cohesion plate, and flow time due to the higher surface area associated with an increase in the water demand. MTK reduced mini-slump and setting times, and improved compressive strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents studies on the properties of fresh and hardened semilightweight self-consolidating concrete (SLWSCC) mixtures, produced with two types of manufactured coarse lightweight aggregates (LWA) and normal weight sand. The first type, a sintered pulverized fuel ash, was made from an industrial by-product, fly ash, whereas the second one, an expanded clay, was produced from a naturally sourced clay. For all mixtures, normal weight sand was used as a fine fraction of aggregates, and the portland cement was partially replaced with a limestone powder. The SLWSCC was produced with different water presaturation regimes of the LWAs. The desired initial slump-flow spread was set between 700 and 800 mm. The effect of three superplasticizers was evaluated by testing properties of SLWSCC, normal weight SCC, and paste mixtures. Three SCC fresh properties were measured: the slump-flow, the V-funnel flow time, and the J-ring blocking step. Moreover, the slump-flow loss was evaluated. The degree of segregation was assessed in both fresh and hardened states. Additionally, the hardened density and the compressive strengths were tested. All SLWSCC mixtures were produced with a desired range of slump-flow spread and with satisfactory passing ability assessed with the J-ring test. SLWSCCs prepared with the expanded clay LWA were less sensitive to the variation of water presaturation levels and showed lower viscosity than those made with the sintered pulverized fuel ash LWA. Only mixtures containing SP-3 superplasticizer showed acceptable workability loss resistance. The saturated surface-dry density of all of the mixtures varied in a range of 2,025–2,125??kg/m 3 . Mixtures containing 29% of coarse LWAs and 71% of sand (by mass) had 24-h and 28-day compressive strengths above 20 and 40 MPa, respectively, but the mixtures made with the expanded clay were slightly weaker.