933 resultados para forward and backward secrecy
Resumo:
In dieser Arbeit wurde die paritätsverletzende Asymmetrie in derrnquasielastischen Elektron-Deuteron-Streuung bei Q^2=0.23 (GeV/c)^2 mitrneinem longitudinal polarisierten Elektronstrahl bei einer Energie von 315rnMeV bestimmt. Die Messung erfolgte unter Rückwärtswinkeln. Der Detektor überdeckte einen polaren Streuwinkelbereichrnzwischen 140 und 150 deg. Das Target bestand aus flüssigemrnDeuterium in einer Targetzelle mit einer Länge von 23.4 cm. Dierngemessene paritätsverletzende Asymmetrie beträgt A_{PV}^d = (-20.11 pm 0.87_{stat} pm 1.03_{syst}), wobei der erste Fehler den statistischenrnFehlereitrag und der zweite den systematischen Fehlerbeitrag beschreibt. Ausrnder Kombination dieser Messung mit Messungen der paritätsverletzendenrnAsymmetrie in der elastischen Elektron-Proton-Streuung bei gleichem Q^2rnsowohl bei Vorwärts- als auch bei Rückwärtsmessungen können diernVektor-Strange-Formfaktoren sowie der effektive isovektorielle und isoskalarernVektorstrom des Protons, der die elektroschwachen radiativen Anapolkorrekturenrnenthält, bestimmt werden. Diese Arbeit umfasst ausserdem die Bestimmungrnder Asymmetrien bei einem transversal polarisierten Elektronstrahl sowohl beirneinem Proton- als auch einem Deuterontarget unter Rückwärtswinkeln beirnImpulsüberträgen von Q^2=0.10 (GeV/c)^2, Q^2=0.23 (GeV/c)^2rnund Q^2=0.35 (GeV/c)^2. Die im Experiment beobachteten Asymmetrien werdenrnmit theoretischen Berechnungen verglichen, welche den Imaginärteil der Zweiphoton-Austauschamplitude beinhalten.
Resumo:
Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB) airflow was responsible for the export of North American emissions into the FT, while transport in the FT was governed by easterly winds driven by the Azores/Bermuda High (ABH) and transient northerly lows. In the fourth case study, North American emissions were lofted to 6-8 km in a WCB before being entrained in the same cyclone's dry airstream and transported down to the observatory. The results of this study show that the lower marine FT may provide an important transport environment where O3 production may continue, in contrast to transport in the marine boundary layer, where O3 destruction is believed to dominate. The second phase of the study presented here focused on improving the analysis methods that are available with LPDMs. While LPDMs are popular and useful for the analysis of atmospheric trace gas measurements, identifying the transport pathway of emissions from their source to a receptor (the Pico Mountain observatory in our case) using the standard gridded model output, particularly during complex meteorological scenarios can be difficult can be difficult or impossible. The transport study in phase 1 was limited to only 1 month out of more than 3 years of available data and included only 4 case studies out of the 16 events specifically due to this confounding factor. The second phase of this study addressed this difficulty by presenting a method to clearly and easily identify the pathway taken by only those emissions that arrive at a receptor at a particular time, by combining the standard gridded output from forward (i.e., concentrations) and backward (i.e., residence time) LPDM simulations, greatly simplifying similar analyses. The ability of the method to successfully determine the source-to-receptor pathway, restoring this Lagrangian information that is lost when the data are gridded, is proven by comparing the pathway determined from this method with the particle trajectories from both the forward and backward models. A sample analysis is also presented, demonstrating that this method is more accurate and easier to use than existing methods using standard LPDM products. Finally, we discuss potential future work that would be possible by combining the backward LPDM simulation with gridded data from other sources (e.g., chemical transport models) to obtain a Lagrangian sampling of the air that will eventually arrive at a receptor.
Resumo:
BACKGROUND Conventional factors do not fully explain the distribution of cardiovascular outcomes. Biomarkers are known to participate in well-established pathways associated with cardiovascular disease, and may therefore provide further information over and above conventional risk factors. This study sought to determine whether individual and/or combined assessment of 9 biomarkers improved discrimination, calibration and reclassification of cardiovascular mortality. METHODS 3267 patients (2283 men), aged 18-95 years, at intermediate-to-high-risk of cardiovascular disease were followed in this prospective cohort study. Conventional risk factors and biomarkers were included based on forward and backward Cox proportional stepwise selection models. RESULTS During 10-years of follow-up, 546 fatal cardiovascular events occurred. Four biomarkers (interleukin-6, neutrophils, von Willebrand factor, and 25-hydroxyvitamin D) were retained during stepwise selection procedures for subsequent analyses. Simultaneous inclusion of these biomarkers significantly improved discrimination as measured by the C-index (0.78, P = 0.0001), and integrated discrimination improvement (0.0219, P<0.0001). Collectively, these biomarkers improved net reclassification for cardiovascular death by 10.6% (P<0.0001) when added to the conventional risk model. CONCLUSIONS In terms of adverse cardiovascular prognosis, a biomarker panel consisting of interleukin-6, neutrophils, von Willebrand factor, and 25-hydroxyvitamin D offered significant incremental value beyond that conveyed by simple conventional risk factors.
Resumo:
In this paper, we examine the issue of memory management in the parallel execution of logic programs. We concentrate on non-deterministic and-parallel schemes which we believe present a relatively general set of problems to be solved, including most of those encountered in the memory management of or-parallel systems. We present a distributed stack memory management model which allows flexible scheduling of goals. Previously proposed models (based on the "Marker model") are lacking in that they impose restrictions on the selection of goals to be executed or they may require consume a large amount of virtual memory. This paper first presents results which imply that the above mentioned shortcomings can have significant performance impacts. An extension of the Marker Model is then proposed which allows flexible scheduling of goals while keeping (virtual) memory consumption down. Measurements are presented which show the advantage of this solution. Methods for handling forward and backward execution, cut and roll back are discussed in the context of the proposed scheme. In addition, the paper shows how the same mechanism for flexible scheduling can be applied to allow the efficient handling of the very general form of suspension that can occur in systems which combine several types of and-parallelism and more sophisticated methods of executing logic programs. We believe that the results are applicable to many and- and or-parallel systems.
Resumo:
To perceive a coherent environment, incomplete or overlapping visual forms must be integrated into meaningful coherent percepts, a process referred to as ?Gestalt? formation or perceptual completion. Increasing evidence suggests that this process engages oscillatory neuronal activity in a distributed neuronal assembly. A separate line of evidence suggests that Gestalt formation requires top-down feedback from higher order brain regions to early visual cortex. Here we combine magnetoencephalography (MEG) and effective connectivity analysis in the frequency domain to specifically address the effective coupling between sources of oscillatory brain activity during Gestalt formation. We demonstrate that perceptual completion of two-tone ?Mooney? faces induces increased gamma frequency band power (55?71 Hz) in human early visual, fusiform and parietal cortices. Within this distributed neuronal assembly fusiform and parietal gamma oscillators are coupled by forward and backward connectivity during Mooney face perception, indicating reciprocal influences of gamma activity between these higher order visual brain regions. Critically, gamma band oscillations in early visual cortex are modulated by top-down feedback connectivity from both fusiform and parietal cortices. Thus, we provide a mechanistic account of Gestalt perception in which gamma oscillations in feature sensitive and spatial attention-relevant brain regions reciprocally drive one another and convey global stimulus aspects to local processing units at low levels of the sensory hierarchy by top-down feedback. Our data therefore support the notion of inverse hierarchical processing within the visual system underlying awareness of coherent percepts.
Resumo:
"January 1983."
Resumo:
Understanding the physiological and psychological factors that contribute to healthy and pathological balance control in man has been made difficult by the confounding effects of the perturbations used to test balance reactions. The present study examined how postural responses were influenced by the acceleration-deceleration interval of an unexpected horizontal translation. Twelve adult males maintained balance during unexpected forward and backward surface translations with two different acceleration-deceleration intervals and presentation orders (serial or random). SHORT perturbations consisted of an initial acceleration (peak acceleration 1.3 m s(-2); duration 300 ms) followed 100 ms later by a deceleration. LONG perturbations had the same acceleration as SHORT perturbations, followed by a 2-s interval of constant velocity before deceleration. Surface and intra-muscular electromyography (EMG) from the leg, trunk, and shoulder muscles were recorded along with motion and force plate data. LONG perturbations induced larger trunk displacements compared to SHORT perturbations when presented randomly and larger EMG responses in proximal and distal muscles during later (500-800 ms) response intervals. During SHORT perturbations, activity in some antagonist muscles was found to be associated with deceleration and not the initial acceleration of the support surface. When predictable, SHORT perturbations facilitated the use of anticipatory mechanisms to attenuate early (100-400 ms) EMG response amplitudes, ankle torque change and trunk displacement. In contrast, LONG perturbations, without an early deceleration effect, did not facilitate anticipatory changes when presented in a predictable order. Therefore, perturbations with a short acceleration-deceleration interval can influence triggered postural responses through reactive effects and, when predictable with repeated exposure, through anticipatory mechanisms.
Resumo:
We perform optimisation of bi-directionally pumped dispersion compensating Raman amplifier modules. Optimal forward and backward pump powers for basic configurations using different commercially available fibers are presented for both single- and multi-channel systems. Optical signal-to-noise ratio improvement of up to 8 dB is achieved as a result of optimisation. © 2003 Published by Elsevier B.V.
Resumo:
In this paper, we present an analysis and optimisation of the performance of bi-directionally pumped dispersion compensation modules acting as simultaneous Raman amplifiers, with optimal configurations for operation with different fibers commercially available. The ratio between forward and backward pump powers for minimum noise influence is obtained in each case, with improvements in the SNR of up to 8 dB when compared to a purely backward-pumped case.
Resumo:
The physical environment can influence older people’s health and well-being, and is often mentioned as being an important factor for person-centred care. Due to high levels of frail health, many older people spend a majority of their time within care facilities and depend on the physical environment for support in their daily life. However, the quality of the physical environment is rarely evaluated, and knowledge is sparse in terms of how well the environment meets the needs of older people. This is partly due to the lack of valid and reliable instruments that could provide important information on environmental quality. Aim: The aim of this thesis was to study the quality of the physical environment in Swedish care facilities for older people, and how it relates to residents’ activities and well-being. Methods: The thesis comprises four papers where both qualitative and quantitative methods were used. Study I involved the translation and adaptation of the Sheffield Care Environment Assessment Matrix (SCEAM) into a Swedish version (S-SCEAM). Several methods were used including forward and backward translation, test of validity via expert consultation and reliability tests. In Study II, S-SCEAM was used to assess the quality of the environment, and descriptive data were collected from 20 purposively sampled residential care facilities (RCFs). Study III was a comparative case study conducted at two RCFs using observations, interviews and S-SCEAM to examine how the physical environment relates to older people’s activities and interactions. In study IV, multilevel modeling was used to determine the association between the quality of the physical environment and the psychological and social well-being of older people living in RCFs. The data in the thesis were analysed using qualitative content analysis, and descriptive, bivariate and multilevel statistics. Results: A specific result was the production of the Swedish version of SCEAM. The instrument contains 210 items structured into eight domains reflecting the needs of older people. When using S-SCEAM, the results showed a substantial variation in the quality of the physical environment between and within RCFs. In general, private apartments and dining areas had high quality, whereas overall building layout and outdoor areas had lower quality. Also, older people’s safety was supported in the majority of facilities, whereas cognitive support and privacy had lower quality. Further, the results showed that environmental quality in terms of cognitive support was associated with residents’ social well-being. Specific environmental features, such as building design and space size, were also noted, through observation, as influencing residents’ activities, and several barriers were found that seemed to restrict residents’ full use of the environment. Conclusions: This thesis contributes to the growing evidence-based design field. The S-SCEAM can be used in future research on the association between the environment and people’s health and well-being. The instrument could also serve as a guide in the planning and design process of new RCFs.
Resumo:
The work done within the framework of my PhD project has been carried out between November 2019 and January 2023 at the Department of Biological, Geological and Environmental Sciences of the University of Bologna, under the supervision of Prof. Marta Galloni and PhD Gherardo Bogo. A period of three months was spent at the Natural History Museum of Rijeka, under the supervision of Prof. Boštjan Surina. The main aim of the thesis was to investigate further the so-called pollinator manipulation hypothesis, which states that when a floral visitor gets in contact with a specific nectar chemistry, the latter affects its behavior of visit on flowers, with potential repercussions on the plant reproductive fitness. To the purpose, the topic was tackled by means of three main approaches: field studies, laboratory assessments, and bibliographic reviews. This research project contributes to two main aspects. First, when insects encounter nectar-like concentrations of a plethora of secondary metabolites in their food-environment, various aspects of their behavior relevant to flower visitation can be affected. In addition, the results I gained confirm that the combination of field studies and laboratory assessments allows to get more realistic pictures of a given phenomenon than the single approaches. Second, reviewing the existent literature in the field of nectar ecology has highlighted how crucial is to establish the origin of nectar biogenic amines to either confirm or reject the multiple speculations made on the role of nectar microbes in shaping plant-animal interactions.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Measurements of the azimuthal anisotropy of high-p(T) neutral pion (pi(0)) production in Au+Au collisions at s(NN)=200 GeV by the PHENIX experiment are presented. The data included in this article were collected during the 2004 Relativistic Heavy Ion Collider running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi(0) mesons detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v(2)) of the angular distributions are presented as a function of pi(0) transverse momentum (p(T)) for different bins in collision centrality. Measured reaction plane dependent pi(0) yields are used to determine the azimuthal dependence of the pi(0) suppression as a function of p(T), R(AA)(Delta phi,p(T)). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi(0) suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region and of the interplay between collective flow and jet-quenching effects along the azimuthal axis.
Resumo:
We show the effects of the granular structure of the initial conditions of a hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter upsilon(2). Such a structure enhances production of isotropically distributed high-p(T) particles, making upsilon(2) smaller there. Also, it reduces upsilon(2) in the forward and backward regions where the global matter density is smaller and, therefore, where such effects become more efficacious.