259 resultados para fluticasone propionate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal transport properties, thermal diffusivity, thermal conductivity and specific heat capacity of Dicalcium Lead Propionate (DLP) crystal have been measured following a modified photopyroelectric thermal wave method. The measurements have been carried out with thermal waves propagating along the three principal symmetry directions, so as to bring out the anisotropy in these parameters. The variations of the above parameters through two prominent phase transition temperatures of this crystal have also been measured to understand the variation of these parameters as it undergoes ferroelectric phase transitions. In addition, complete thermal analysis and FTIR measurements have been done on the crystal to bring out the correlation of these results with the corresponding thermal transport properties. All these results are presented and discussed. The data presented in this paper form a comprehensive set of results on the thermal transport properties of this crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five lactating dairy cows with a permanent cannula in the rumen were given ( kg DM/d) a normal diet (7.8 concentrates, 5.1 hay) or a low-roughage (LR) diet (11.5 concentrates, 1.2 hay) in two meals daily in a two-period crossover design. Milk fat (g/kg) was severely reduced on diet LR. To measure rates of production of individual volatile fatty acids (VFA) in the rumen, 0.5 mCi 1-C-14-acetic acid, 2-C-14-propionic acid, or 1-C-14-n-butyric acid were infused into the rumen for 22 h at intervals of 2 to 6 d; rumen samples were taken over the last 12 h. To measure rumen volume, we infused Cr-EDTA into the rumen continuously, and polyethylene glycol was injected 2 h before the morning feed. Results were very variable, so volumes measured by rumen emptying were used instead. Net production of propionic acid more than doubled on LR, but acetate and butyrate production was only numerically lower. Net production rates pooled across both diets were significantly related to concentrations for each VFA. Molar proportions of net production were only slightly higher than molar proportions of concentrations for acetate and propionate but were lower for butyrate. The net energy value (MJ/d) of production of the three VFA increased from 89.5 on normal to 109.1 on LR, equivalent to 55 and 64% of digestible energy, respectively. Fully interchanging, three-pool models of VFA C fluxes are presented. It is concluded that net production rates of VFA can be measured in non-steady states without the need to measure rumen volumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco’s modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher’s protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p < 0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. Design To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. Results Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. Conclusions These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work was to evaluate the relevance of the 2-methylcitric acid cycle (2MCC) to the catabolism of propionate in Burkholderia sacchari. Two B. sacchari mutants unable to grow on propionate were obtained: one disrupted in acnM, and the other in acnM and prpC deleted. An operative 2MCC significantly reduces the bacterial ability to incorporate 3-hydroxyvalerate (3HV) into a biodegradable copolyester accumulated from carbohydrates plus propionate. The efficiency of the mutants in converting propionate to 3HV units (Y(3HV/prp)) increased from 0.09 g.g(-1) to 0.81-0.96 g.g(-1), indicating that acnM and prpC are both essential for growth on propionate. None of the mutations resulted in achievement of the maximum theoretical Y(3HV/prp) (1.35 g.g(-1)). When increasing concentrations of propionate were supplied, decreasing values of Y(3HV/prp) were observed. The results obtained corroborate the hypothesis of the presence of other propionate catabolic pathways in B. sacchari. The 2MCC would be the more operative pathway, but a second pathway, which remains to be elucidated, would assume more importance under propionate concentrations of 1 g.L(-1) or higher. The efficiency in converting propionate to 3HV units can be improved by decreasing the propionate concentrations, owing to the role of the 2MCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hundred fifty crossbred yearling steers with an average weight of 876 pounds were used in a 111-day experiment. Steers received either 1) no implant and no ionophore, 2) Synovex Plus¨ and no ionophore, 3) Cattlyst¨ and no implant, 4) Synovex Plus¨ and Cattlyst¨, or 5) Revalor S¨ and Rumensin¨. Implanting steers with ) Synovex Plus¨ increased gain and improved feed efficiency compared with control steers. Compared with steers not implanted, steers implanted with Synovex Plus¨ had heavier carcasses and larger ribeye areas, but similar fat thickness and yield grades. Feeding Cattlyst¨ alone did not increase gain or improve feed conversion, but there was some improvement in feedlot performance when Cattlyst¨ was fed to steers implanted with Synovex Plus¨. Steers implanted with Synovex Plus¨ and fed Cattlyst¨ had superior gains to steers implanted with Revalor S¨ and fed Rumensin¨.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis,' a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA. A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of acetate and propionate on the performance of a recently proposed and characterized photosynthetic biological sulfide removal system have been investigated with a view to predicting this concept's suitability for removing sulfide from wastewater undergoing or having undergone anaerobic treatment. The concept relies on substratum-irradiated biofilms dominated by green sulfur bacteria (GSB), which are supplied with radiant energy in the band 720 - 780 nm. A model reactor was fed for 7 months with a synthetic wastewater free of volatile fatty acids (VFAs), after which time intermittent dosing of the wastewater with acetate or propionate was begun. Such dosing suppressed the areal net sulfide removal rate by similar to50%, and caused the principal net product of sulfide removal to switch from sulfate to elemental-S. Similarly suppressed values of this rate were observed when the wastewater was dosed continuously with acetate, and this rate was not significantly affected by changes in the concentration of ammonia-N in the feed. The main net product of sulfide removal was again elemental-S, which was scarcely released into the liquid, however. Sulfate reduction and sulfur reduction were observed when the light supply was interrupted and were inferred to be occurring within the irradiated biofilm. A preexisting conceptual model of the biofilm was augmented with both of these reductive processes, and this augmented model was shown to account for most of the observed effects of VFA dosing. The implications of these findings for the practicality of the technology are considered. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) performance is directly affected by the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigates the effects of carbon source on PAO and GAO metabolism. Enriched PAO and GAO cultures were tested with the two most commonly found volatile fatty acids (VFAs) in wastewater systems, acetate and propionate. Four sequencing batch reactors (SBRs) were operated under similar conditions and influent compositions with either acetate or propionate as the sole carbon source. The stimulus for selection of the PAO and GAO phenotypes was provided only through variation of the phosphorus concentration in the feed. The abundance of PAOs and GAOs was quantified using fluorescence in situ hybridisation (FISH). In the acetate fed PAO and GAO reactors, Candidatus Accumulibacter phosphatis (a known PAO) and Candidatus Competibacter phosphatis (a known GAO) were present in abundance. A novel GAO, likely belonging to the group of Alphaproteobacteria, was found to dominate the propionate fed GAO reactor. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to take up acetate and propionate. PAOs enriched with acetate as the sole carbon source were immediately able to take up propionate, likely at a similar rate as acetate. However, an enrichment of GAOs with acetate as the sole carbon source took up propionate at a much slower rate (only about 5% of the rate of acetate uptake on a COD basis) during a short-term switch in carbon source. A GAO enrichment with propionate as the sole carbon source took up acetate at a rate that was less than half of the propionate uptake rate on a COD basis. These results, along with literature reports showing that PAOs fed with propionate (also dominated by Accumulibacter) can immediately switch to acetate, suggesting that PAOs are more adaptable to changes in carbon source as compared to GAOs. This study suggests that the PAO and GAO competition could be influenced in favour of PAOs through the provision of propionate in the feed or even by regularly switching the dominant VFA species in the wastewater. Further study is necessary in order to provide greater support for these hypotheses. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the microbial competition observed in enhanced biological phosphorus removal (EBPR) systems, an undesirable group of micro-organisms known as glycogen-accumulating organisms (GAOs) compete for carbon in the anaerobic period with the desired polyphosphate-accumulating organisms (PAOs). Some studies have suggested that a propionate carbon source provides PAOs with a competitive advantage over GAOs in EBPR systems; however, the metabolism of GAOs with this carbon source has not been previously investigated. In this study, GAOs were enriched in a laboratory-scale bioreactor with propionate as the sole carbon source, in an effort to better understand their biochemical processes. Based on comprehensive solid-, liquid- and gas-phase chemical analytical data from the bioreactor, a metabolic model was proposed for the metabolism of propionate by GAOs. The model adequately described the anaerobic stoichiometry observed through chemical analysis, and can be a valuable tool for further investigation of the competition between PAOs and GAOs, and for the optimization of the EBPR process. A group of Alphaproteobacteria dominated the biomass (96% of Bacteria) from this bioreactor, while post-fluorescence in situ hybridization (FISH) chemical staining confirmed that these Alphaproteobacteria produced poly-beta-hydroxyalkanoates (PHAs) anaerobically and utilized them aerobically, demonstrating that they were putative GAOs. Some of the Alphaproteobacteria were related to Defluvicoccus vanus (16% of Bacteria), but the specific identity of many could not be determined by FISH. Further investigation into the identity of other GAOs is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) is a widely used process for achieving phosphorus removal from wastewater. A potential reason for EBPR failure is the undesirable growth of glycogen accumulating organisms (GAOs), which can compete for carbon sources with the bacterial group responsible for phosphorus removal from wastewater: the polyphosphate accumulating organisms (PAOs). This study investigates the impact of carbon source on EBPR performance and the competition between PAOs and GAOs. Two sequencing batch reactors (SBRs) were operated during a 4-6 month period and fed with a media containing acetate or propionate, respectively, as the sole carbon source. It was found that the acetate fed SBR rarely achieved a high level of phosphorus removal, and that a large portion of the microbial community was comprised of Candidatus Competibacter phosphatis, a known GAO. The propionate fed SBR, however, achieved stable phosphorus removal throughout the study, apart from one brief disturbance. The bacterial community of the propionate fed SBR was dominated by Candidatus Accumulibacter phosphatis, a known PAO, and did not contain Competibacter In a separate experiment, another SBR was seeded with a mixture of PAOs and a group of alphaproteobacterial GAOs, both enriched with propionate as the sole carbon source. Stable EBPR was achieved and the PAO population increased while the GAOs appeared to be out-competed. The results of this paper suggest that propionate may provide PAOs with a selective advantage over GAOs in the PAO-GAO competition, particularly through the minimisation of Competibacter Propionate may be a more suitable substrate than acetate for enhancing phosphorus removal in EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".