967 resultados para finite integral transform technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for computing the fields produced by radio frequency probes of the type used in magnetic resonance imaging. The effects of surrounding the probe with a shielding coil, intended to eliminate stray fields produced outside the probe, are included. An essential feature of these devices is the fact that the conducting rungs of the probe are of finite width relative to the coil radius, and it is therefore necessary to find the distribution of current within the conductors as part of the solution process. This is done here using a numerical method based on the inverse finite Hilbert transform, applied iteratively to the entire structure including its shielding coils. It is observed that the fields are influenced substantially by the width of the conducting rungs of the probe, since induced eddy currents within the rungs become more pronounced as their width is increased. The shield is also shown to have a significant effect on both the primary current density and the resultant fields. Quality factors are computed for these probes and compared with values measured experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an attempt was made to investigate a fundamental problem related to the flexural waves excited by rectangular transducers. Due to the disadvantages of the Green's function approach for solving this problem, a direct and effective method is proposed using a multiple integral transform method and contour integration technique. The explicit frequency domain solutions obtained from this newly developed method are convenient for understanding transducer behavior and theoretical optimization and experimental calibration of rectangular transducers. The time domain solutions can then be easily obtained by using the fast Fourier transform technique. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acousto-ultrasonic (AU) input-output characteristics for contact-type transmitting and receiving transducers coupled to composite laminated plates are considered in this paper. Combining a multiple integral transform method, an ordinary discrete layer theory for the laminates and some simplifying assumptions for the electro-mechanical transduction behaviour of the transducers, an analytical solution is developed which can deal with all the wave processes involved in the AU measurement system, i.e, wave generation, wave propagation and wave reception. The spectral response of the normal contact pressure sensed by the receiving transducer due to an arbitrary input pulse excited by the transmitting transducer is obtained. To validate the new analytical-numerical spectral technique in the low-frequency regime, the results are compared with Mindlin plate theory solutions. Based on the analytical results, numerical calculations are carried out to investigate the influence of various external parameters such as frequency content of the input pulse, transmitter/receiver spacing and transducer aperture on the output of the measurement system. The results show that the presented analytical-numerical procedure is an effective tool for understanding the input-output characteristics of the AU technique for laminated plates. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of permanently attaching interdigital transducers (IDT) to either flat or curved structural surfaces to excite single Lamb wave mode has demonstrated great potential for quantitative non-destructive evaluation and smart materials design, In this paper, the acoustic wave field in a composite laminated plate excited by an IDT is investigated. On the basis of discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the surface velocity response of the plate due to the IDTs excitation. In this approach, the frequency spectrum and wave number spectrum of the output of IDT are obtained directly. The corresponding time domain results are calculated by applying a standard inverse fast Fourier transformation technique. Numerical examples are presented to validate the developed method and show the ability of mode selection and isolation. A new effective way of transfer function estimation and interpretation is presented by considering the input wave number spectrum in addition to the commonly used input frequency spectrum. The new approach enables the simple physical evaluation of the influences of IDT geometrical features such as electrode finger widths and overall dimension and excitation signal properties on the input-output characteristics of IDT. Finally, considering the convenience of Mindlin plate wave theory in numerical computations as well as theoretical analysis, the validity is examined of using this approximate theory to design IDT for the excitation of the first and second anti-symmetric Lamb modes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho é apresentada a solução da equação de difusão-advecção transiente para simular a dispersão de poluentes na Camada Limite Planetária. A solução é obtida através do método analítico GILTT (Generalized Integral Laplace Transform Technique) e da técnica de inversão numérica da quadratura de Gauss. A validação da solução é comprovada utilizando as concentraçãos obtidas a partir do modelo com as obtidas experimentalmente pelo Experimento de Copenhagen. Nesta comparação foram utilizados os perfis de vento potencial e logaritmo e os parâmetros de turbulência propostos por Degrazia et al (1997) [19] e (2002) [17]. Os melhores resultados foram obtidos utilizando o perfil de vento potencial e o coeficiente de difusão propostos por Degrazia et al (1997). A influência da velocidade vertical é mostrada através do comportamento das concentrações de poluentes na pluma. Além disso, as velocidades verticais e longitudinais geradas pelo Large Eddy Simulation (LES) foram colocadas no modelo para poder simular uma camada limite turbulenta mais realística, a qual apresentou resultados satisfatórios quando comparados com os disponíveis na literatura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é obter os parâmetros turbulentos para o crescimento da camada limite planetária (CLP), durante a realizaçãoo do experimento Olad (Overland along wind dispersion experiment), conduzido na transição da noite para o dia. Nesta hora a CLP exibe uma altura, geralmente, pequena, disponibilizando pouco volume para a dispersão dos poluentes. Assim, concentrações superficiais elevadas podem ocorrer, atacando materiais, plantas e a saúde da população. Logo, conhecer os parâmetros do crescimneto é de fundamental importância para o correto modelamento da dispersão atmosférica ao amanhecer. A validação dos parâmetros é realizada a partir da solução da equação da difusão-advecção bidimensional, pelo método da GILTT (Generalized Integral Laplace Transform Technique). São empregados coeficientes de difusão turbulenta (problema de fechamento) dependentes da estabilidade atmosférica. As concentrações superficiais tridimensionais são obtidas através do espalhamento lateral da pluma com distribuição gaussiana. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com os dados experimentais. O modelo proposto mostrou-se aceitável em relação aos dados do experimento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 35R11, 44A10, 44A20, 26A33, 33C45

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 33C15, 33C05, 33C45, 65R10, 20C40

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rectangular piezoceramic transducers are widely used in ultrasonic evaluation and health monitoring techniques and structural vibration control applications. In this paper the flexural waves excited by rectangular transducers adhesively attached to isotropic plates are investigated. In view of the difficulties in developing accurate analytical models describing the transfer characteristics of the transducer due to the complex electromechanical transduction processes and transducer-structure interactions involved, a combined theoretical-experimental approach is developed. A multiple integral transform method is used to describe the propagation behaviour of the waves in the plates, while a heterodyne Doppler laser vibrometer is employed as a non-contact receiver device. This combined theoretical-experimental approach enables the efficient characterization of the electromechanical transfer properties of the piezoelectric transducer which is essential for the development of optimized non-destructive evaluation systems. The results show that the assumption of a uniform contact pressure distribution between the transducer and the plate can accurately predict the frequency spectrum and time domain response signals of the propagating waves along the main axes of the rectangular transmitter element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utiliza-se o método coordenada geradora Hartree-Fock para gerar bases Gaussianas adaptadas para os átomos de Li (Z=3) até Xe (Z=54). Neste método, integram-se as equações de Griffin-Hill-Wheeler-Hartree-Fock através da técnica de discretização integral. Comparam-se as funções de ondas geradas neste trabalho com as funções de ondas Roothaan-Hartree-Fock de Clementi e Roetti (1974) e com outros conjuntos de bases relatados na literatura. Para os átomos estudados aqui, os erros em nossas energias totais relativos aos limites numéricos Hartree-Fock são sempre menores que 7,426 milihartree.