961 resultados para fat oxidation
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.
Resumo:
PURPOSE: Gender-specific differences in substrate utilization during exercise have been reported, typically such that women rely more on fat than men. This study investigated whether gender differences exist in the utilization of intramyocellular lipids (IMCL) and glycogen. METHODS: IMCL and glycogen, as well as total fat and carbohydrate (CHO) oxidation were measured in nine males and nine females before, during, and after an endurance exercise. The trained subjects exercised on a bicycle ergometer at 50% maximal workload for 3 h. IMCL and glycogen were determined in the thigh by magnetic resonance spectroscopy. Oxygen uptake (VO(2)) and carbon dioxide production were determined by open circuit spirometry to calculate total fat and CHO oxidation. Relative power output, percent of maximum heart rate, VO(2peak), and respiratory exchange ratio were the same. RESULTS: Average fat oxidation was the same, whereas CHO oxidation was significantly higher in males compared with females. The relative contribution of these fuels to total energy used were similar in males and females. Males and females depleted IMCL and glycogen significantly (P < 0.001) during the 3-h exercise. IMCL levels at rest (P < 0.05) and its depletion during exercise (P < 0.001) were significantly higher in males compared with females, whereas glycogen was stored and used in the same range by both genders. CONCLUSION: During this 3-h exercise, energy supplies from fat and CHO were similar in both genders, and males as well as females reduced their IMCL stores significantly. The larger contribution of IMCL during exercise in males compared with females could either be a result of gender-specific substrate selection, or different long-term training habit.
Resumo:
Body composition changes with increasing age in men, in that lean body mass decreases whereas fat mass increases. Whether this altered body composition is related to decreasing physical activity or to the known age-associated decrease in growth hormone secretion is uncertain. To address this question, three groups of healthy men (n = 14 in each group), matched for weight, height and body mass index, were investigated using dual-energy X-ray absorptiometry, indirect calorimetry and estimate of daily growth hormone secretion [i.e. plasma insulin-like growth factor I (IGF-I-) levels]. Group 1 comprised young untrained subjects aged 31.0 +/- 2.1 years (mean +/- SEM) taking no regular physical exercise; group 2 consisted of old untrained men aged 68.6 +/- 1.2 years; and group 3 consisted of healthy old men aged 67.4 +/- 1.2 years undergoing regular physical training for more than 10 years with a training distance of at least 30 km per week. Subjects in group 3 had for the past three years taken part in the 'Grand Prix of Berne', a 16.5-km race run at a speed of 4.7 +/- 0.6 min km-1 (most recent race). Fat mass was more than 4 kg higher in old untrained men (P < 0.01, ANOVA) than in the other groups (young untrained men, 12.0 +/- 0.9 kg; old untrained men, 16.1 +/- 1.0 kg; old trained men, 11.0 +/- 0.8 kg), whereas body fat distribution (i.e. the ratio of upper to lower body fat mass) was similar between the three groups. The lean mass of old untrained men was more than 3.5 kg lower (P < 0.02, ANOVA) than in the other two groups (young untrained men, 56.4 +/- 1.0 kg; old untrained men, 52.4 +/- 1.0 kg; old trained men, 56.0 +/- 1.0 kg), mostly because of a loss of skeletal muscle mass in the arms and legs (young untrained men, 24.0 +/- 0.5 kg; old untrained men 20.8 +/- 0.5 kg; old trained men, 23.6 +/- 0.7 kg; P < 0.01, ANOVA). Resting metabolic rate per kilogram lean mass decreased with increasing age independently of physical activity (r = -0.42, P < 0.005). Fuel metabolism was determined by indirect calorimetry at rest. Protein oxidation was similar in the three groups. Old untrained men had higher (P < 0.001) carbohydrate oxidation (young untrained men, 13.2 +/- 1.0 kcal kg-1 lean mass; old untrained men, 15.2 +/- 1.3 kcal Kg-1; old trained men, 7.8 +/- 0.8 kcal kg-1), but lower (P < 0.05, ANOVA) fat oxidation (young untrained men, 10.1 +/- 1.2 kcal kg-1 lean mass; old untrained men, 6.5 +/- 1.0 kcal kg-1; old trained men, 13.7 +/- 1.0 kcal kg-1) than the other two groups. Mean plasma IGF-I level in old trained men was higher than in old untrained men (P < 0.05), but was still lower than that observed in young untrained men (P < 0.005) (young untrained men, 236 +/- 24 ng mL-1; old untrained men, 119 +/- 13 ng mL-1; old trained men, 166 +/- 14 ng mL-1). In summary, regular physical training in older men seems to prevent the changes in body composition and fuel metabolism normally associated with ageing. Whether regular physical training in formerly untrained old subjects would result in similar changes awaits further study.
Resumo:
Kidney transplant patients display decreased muscle mass and increased fat mass. Whether this altered body composition is due to glucocorticoid induced altered fuel metabolism is unclear. To answer this question, 16 kidney transplant patients were examined immediately after kidney transplantation (12 +/- 4 days, mean +/- SEM) and then during months 2, 5, 11 and 16, respectively, by whole body dual energy X-ray absorptiometry (Hologic QDR 1000W) and indirect calorimetry. Results were compared with those of 16 age, sex and body mass index matched healthy volunteers examined only once. All patients received dietary counselling with a step 1 diet of the American Heart Association and were advised to restrict their caloric intake to the resting energy expenditure plus 30%. Immediately after transplantation, lean mass of the trunk was higher by 7 +/- 1% (P < 0.05) and that of the limbs was lower by more than 10% (P < 0.01) in patients than in controls. In contrast, no difference in fat mass and resting energy expenditure could be detected between patients and controls. During the 16 months of observation, total fat mass increased in male (+4.9 +/- 1.5 kg), but not in female patients (0.1 +/- 0.8 kg). The change in fat mass observed in men was due to an increase in all subregions of the body analysed (trunk, arms+legs as well as head+neck), whereas in women only an increase in head+neck by 9 +/- 2% (P = 0.05) was detected. Body fat distribution remained unchanged in both sexes over the 16 months of observation. Lean mass of the trunk mainly decreased between days 11 and 42 (P < 0.01) and remained stable thereafter. After day 42, lean mass of arms and legs (mostly striated muscle) and head+neck progressively increased over the 14 months of observation by 1.6 +/- 0.6 kg (P < 0.05) and 0.4 +/- 0.1 kg (P < 0.01), respectively. Resting energy expenditure was similar in controls and patients at 42 days (30.0 +/- 0.7 vs. 31.0 +/- 0.9 kcal kg-1 lean mass) and did not change during the following 15 months of observation. However, composition of fuel used to sustain resting energy expenditure in the fasting state was altered in patients when compared with normal subjects, i.e. glucose oxidation was higher by more than 45% in patients (P < 0.01) during the second month after grafting, but gradually declined (P < 0.01) over the following 15 months to values similar to those observed in controls. Protein oxidation was elevated in renal transplant patients on prednisone at first measurement, a difference which tended to decline over the study period. In contrast to glucose and protein oxidation, fat oxidation was lower in patients 42 days after grafting (P < 0.01), but increased by more than 100% reaching values similar to those observed in controls after 16 months of study. Mean daily dose of prednisone per kg body weight correlated with the three components of fuel oxidation (r > 0.93, P < 0.01), i.e. protein, glucose and fat oxidation. These results indicate that in prednisone treated renal transplant patients fuel metabolism is regulated in a dose-dependent manner. Moreover, dietary measures, such as caloric and fat intake restriction as well as increase of protein intake, can prevent muscle wasting as well as part of the usually observed fat accumulation. Furthermore, the concept of preferential upper body fat accumulation as consequence of prednisone therapy in renal transplant patients has to be revised.
Resumo:
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a comorbidity of childhood obesity. OBJECTIVE We examined whole-body substrate metabolism and metabolic characteristics in obese adolescents with vs. without NAFLD. SUBJECTS Twelve obese (BMI ≥ 95th percentile) adolescents with and without NAFLD [intrahepatic triglyceride (IHTG) ≥5.0% vs. <5.0%] were pair-matched for race, gender, age and % body fat. METHODS Insulin sensitivity (IS) was assessed by a 3-h hyperinsulinemic-euglycemic clamp and whole-body substrate oxidation by indirect calorimetry during fasting and insulin-stimulated conditions. RESULTS Adolescents with NAFLD had increased (p < 0.05) abdominal fat, lipids, and liver enzymes compared with those without NAFLD. Fasting glucose concentration was not different between groups, but fasting insulin concentration was higher (p < 0.05) in the NAFLD group compared with those without. Fasting hepatic glucose production and hepatic IS did not differ (p > 0.1) between groups. Adolescents with NAFLD had higher (p < 0.05) fasting glucose oxidation and a tendency for lower fat oxidation. Adolescents with NAFLD had lower (p < 0.05) insulin-stimulated glucose disposal and lower peripheral IS compared with those without NAFLD. Although respiratory quotient (RQ) increased significantly from fasting to insulin-stimulated conditions in both groups (main effect, p < 0.001), the increase in RQ was lower in adolescents with NAFLD vs. those without (interaction, p = 0.037). CONCLUSION NAFLD in obese adolescents is associated with adverse cardiometabolic profile, peripheral insulin resistance and metabolic inflexibility.
Resumo:
OBJECTIVE Growth hormone (GH) has a strong lipolytic action and its secretion is increased during exercise. Data on fuel metabolism and its hormonal regulation during prolonged exercise in patients with growth hormone deficiency (GHD) is scarce. This study aimed at evaluating the hormonal and metabolic response during aerobic exercise in GHD patients. DESIGN Ten patients with confirmed GHD and 10 healthy control individuals (CI) matched for age, sex, BMI, and waist performed a spiroergometric test to determine exercise capacity (VO2max). Throughout a subsequent 120-minute exercise on an ergometer at 50% of individual VO2max free fatty acids (FFA), glucose, GH, cortisol, catecholamines and insulin were measured. Additionally substrate oxidation assessed by indirect calorimetry was determined at begin and end of exercise. RESULTS Exercise capacity was lower in GHD compared to CI (VO2max 35.5±7.4 vs 41.5±5.5ml/min∗kg, p=0.05). GH area under the curve (AUC-GH), peak-GH and peak-FFA were lower in GHD patients during exercise compared to CI (AUC-GH 100±93.2 vs 908.6±623.7ng∗min/ml, p<0.001; peak-GH 1.5±1.53 vs 12.57±9.36ng/ml, p<0.001, peak-FFA 1.01±0.43 vs 1.51±0.56mmol/l, p=0.036, respectively). There were no significant differences for insulin, cortisol, catecholamines and glucose. Fat oxidation at the end of exercise was higher in CI compared to GHD patients (295.7±73.9 vs 187.82±103.8kcal/h, p=0.025). CONCLUSION A reduced availability of FFA during a 2-hour aerobic exercise and a reduced fat oxidation at the end of exercise may contribute to the decreased exercise capacity in GHD patients. Catecholamines and cortisol do not compensate for the lack of the lipolytic action of GH in patients with GHD.
Resumo:
Recent studies have shown the importance of the beat-by-beat changes in heart rate influenced by the autonomic nervous system (ANS), or heart rate variability (HRV). The purpose of this study was to examine the lasting effects of hypoxic exercise on HRV, and its influences on substrate usage. Results from this study could lead an increased understanding on this topic. Eight active healthy males (age: 31±11 years; height: 180±7 cm; weight: 83±8 kg; VO₂max (maximal oxygen consumption): 4.4±0.6 L•min⁻¹) underwent normoxic and hypoxic (FᵢO₂= 0.15) conditions during high-intensity interval (HIIT) cycling (70%-high interval, 35%-rest interval). Cycling intensity was determined by a peak power output cycling test. Each experimental session consisted of a basal metabolic rate determination, up to 45-minutes of HIIT cycling, and three 30-minute post-exercise metabolic rate measurements (spanning 3 hours and 15 minutes after exercise). During exercise, RPE was higher (p<0.01) and LAC (lactate) increased (p=0.001) at each point of time in hypoxia, with no change in normoxia. After hypoxic exercise, the SNS/PNS ratio (overall ANS activity) was significantly higher (p<0.01) and significantly decreased through time in both conditions (p<0.01). In addition, a significant interaction between time and conditions (p<0.02) showed a decrease in LAC concentration through time post-hypoxic exercise. The findings showed that a single bout of hypoxic exercise alters ANS activity post-exercise along with shifting substrate partitioning from glycolytic to lipolytic energy production. The significant decrease in LAC concentration post-hypoxic exercise supports the notion that hypoxic HIIT induces a greater muscle glycogen depletion leading to increased fat oxidation to sustain glycogenesis and gluconeogenesis to maintain blood glucose level during recovery.
Resumo:
Trabalho Complementar apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de licenciada em Ciências da Nutrição
Resumo:
In many countries, governments and health agencies are strongly promoting physical activity as a means to prevent the accumulation of fatness that leads to weight gain and obesity. However, there is often a resistance to respond to health promotion initiatives. For example, in the UK, the Chief Medical Officer has recently reported that 71% of women and 61% of men fail to carry out even the minimal amount of physical activity recommended in the government’s guidelines. Similarly, the Food safety Agency has promoted reductions in the intake of fat, sugar and salt but with very little impact on the pattern of consumption. Why is it that recommendations to improve health are so difficult to implement, and produce the desired outcome?
Resumo:
L’accumulation de triglycérides (TG) dans les hépatocytes est caractéristique de la stéatose hépatique non-alcoolique (SHNA). Cette dernière se produit dans diverses conditions dont le facteur commun est le métabolisme anormal des lipides. Le processus conduisant à l'accumulation des lipides dans le foie n’a pas encore été totalement élucidé. Toutefois, des lipides s'accumulent dans le foie lorsque les mécanismes qui favorisent leur exportation (oxydation et sécrétion) sont insuffisants par rapport aux mécanismes qui favorisent leur importation ou leur biosynthèse. De nos jours il est admis que la carence en œstrogènes est associée au développement de la stéatose hépatique. Bien que les résultats des études récentes révèlent l'implication des hormones ovariennes dans l'accumulation de lipides dans le foie, les mécanismes qui sous-tendent ce phénomène doivent encore être étudiés. En conséquence, les trois études présentées dans cette thèse ont été menées sur des rates ovariectomizées (Ovx), comme modèle animal de femmes post-ménopausées, pour étudier les effets du retrait des œstrogènes sur le métabolisme des lipides dans le foie, en considérant l'entraînement physique comme étant un élément positif pouvant contrecarrer ces effets. Il a été démontré que l'entraînement physique peut réduire l'accumulation de graisses dans le foie chez les rates Ovx. Dans la première étude, nous avons montré que chez les rates Ovx nourries à la diète riche en lipides (HF), les contenus de TG hépatiques étaient élevées (P < 0.01) comparativement aux rates Sham, 5 semaines après la chirurgie. Le changement de la diète HF par la diète standard (SD) chez les rates Sham a diminué l’accumulation de lipides dans le foie. Toutefois, chez les rates Ovx, 8 semaines après le changement de la HF par la SD le niveau de TG dans le foie était maintenu aussi élevé que chez les rates nourries continuellement avec la diète HF. Lorsque les TG hépatiques mesurés à la 13e semaine ont été comparés aux valeurs correspondant au retrait initial de la diète HF effectué à la 5e semaine, les niveaux de TG hépatiques chez les animaux Ovx ont été maintenus, indépendamment du changement du régime alimentaire; tandis que chez les rats Sham le passage à la SD a réduit (P < 0.05) les TG dans le foie. Les mêmes comparaisons avec la concentration des TG plasmatiques ont révélé une relation inverse. Ces résultats suggèrent que la résorption des lipides au foie est contrée par l'absence des œstrogènes. Dans cette continuité, nous avons utilisé une approche physiologique dans notre seconde étude pour investiguer la façon dont la carence en œstrogènes entraîne l’accumulation de graisses dans le foie, en nous focalisant sur la voie de l'exportation des lipides du foie. Les résultats de cette étude ont révélé que le retrait des œstrogènes a entraîné une augmentation (P < 0.01) de l’accumulation de lipides dans le foie en concomitance avec la baisse (P < 0.01) de production de VLDL-TG et une réduction l'ARNm et de la teneur en protéines microsomales de transfert des triglycérides (MTP). Tous ces effets ont été corrigés par la supplémentation en œstrogènes chez les rates Ovx. En outre, l'entraînement physique chez les rates Ovx a entraîné une réduction (P < 0.01) de l’accumulation de lipides dans le foie ainsi qu’une diminution (P < 0.01) de production de VLDL-TG accompagnée de celle de l'expression des gènes MTP et DGAT-2 (diacylglycérol acyltransférase-2). Des études récentes suggèrent que le peptide natriurétique auriculaire (ANP) devrait être au centre des intérêts des recherches sur les métabolismes énergétiques et lipidiques. Le ANP est relâché dans le plasma par les cellules cardiaques lorsque stimulée par l’oxytocine et exerce ses fonctions en se liant à son récepteur, le guanylyl cyclase-A (GC-A). En conséquence, dans la troisième étude, nous avons étudié les effets du blocage du système ocytocine-peptide natriurétique auriculaire (OT-ANP) en utilisant un antagoniste de l’ocytocine (OTA), sur l'expression des gènes guanylyl cyclase-A et certains marqueurs de l’inflammation dans le foie de rates Ovx. Nous avons observé une diminution (P < 0.05) de l’ARNm de la GC-A chez les rates Ovx et Sham sédentaires traitées avec l’OTA, tandis qu’une augmentation (P < 0.05) de l'expression de l’ARNm de la protéine C-réactive (CRP) hépatique a été notée chez ces animaux. L’exercice physique n'a apporté aucun changement sur l'expression hépatique de ces gènes que ce soit chez les rates Ovx ou Sham traitées avec l’OTA. En résumé, pour expliquer l’observation selon laquelle l’accumulation et la résorption de lipides dans le foie dépendent des mécanismes associés à des niveaux d’œstrogènes, nos résultats suggèrent que la diminution de production de VLDL-TG induite par une déficience en œstrogènes, pourrait être un des mecanismes responsables de l’accumulation de lipides dans le foie. L’exercice physique quant à lui diminue l'infiltration de lipides dans le foie ainsi que la production de VLDL-TG indépendamment des niveaux d'œstrogènes. En outre, l'expression des récepteurs de l’ANP a diminué par l'OTA chez les rates Ovx et Sham suggérant une action indirecte de l’ocytocine (OT) au niveau du foie indépendamment de la présence ou non des estrogènes. L’axe ocytocine-peptide natriurétique auriculaire, dans des conditions physiologiques normales, protègerait le foie contre l'inflammation à travers la modulation de l’expression de la GC-A.
Resumo:
Acetyl-CoA carboxylase β (ACC2) plays a key role in fatty acid synthesis and oxidation pathways. Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Gene-nutrient interactions may affect MetS risk. This study determined the relationship between ACC2 polymorphisms (rs2075263, rs2268387, rs2284685, rs2284689, rs2300453, rs3742023, rs3742026, rs4766587, and rs6606697) and MetS risk, and whether dietary fatty acids modulate this in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). Minor A allele carriers of rs4766587 had increased MetS risk (OR 1.29 [CI 1.08, 1.58], P = 0.0064) compared with the GG homozygotes, which may in part be explained by their increased body mass index (BMI), abdominal obesity, and impaired insulin sensitivity (P < 0.05). MetS risk was modulated by dietary fat intake (P = 0.04 for gene-nutrient interaction), where risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62 [CI 1.05, 2.50], P = 0.027), particularly a high intake (>5.5% energy) of n-6 polyunsaturated fat (PUFA) (OR 1.82 [CI 1.14, 2.94], P = 0.01; P = 0.05 for gene-nutrient interaction). Saturated and monounsaturated fat intake did not modulate MetS risk. Importantly, we replicated some of these findings in an independent cohort. In conclusion, the ACC2 rs4766587 polymorphism influences MetS risk, which was modulated by dietary fat, suggesting novel gene-nutrient interactions.
Resumo:
We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.
Resumo:
Background: Obese adults are prone to develop metabolic and cardiovascular diseases. Furthermore, over-weight expectant mothers give birth to large babies who also have increased likelihood of developing metabolic and cardiovascular diseases. Fundamental advancements to better understand the pathophysiology of obesity are critical in the development of anti-obesity therapies not only for this but also future generations. Skeletal muscle plays a major role in fat metabolism and much work has focused in promoting this activity in order to control the development of obesity. Research has evaluated myostatin inhibition as a strategy to prevent the development of obesity and concluded in some cases that it offers a protective mechanism against a high-fat diet. Results: We hypothesised that myostatin inhibition should protect not only the mother but also its developing foetus from the detrimental effects of a high-fat diet. Unexpectedly, we found muscle development was attenuated in the foetus of myostatin null mice raised on a high-fat diet. We therefore re-examined the effect of the high-fat diet on adults and found myostatin null mice were more susceptible to diet-induced obesity through a mechanism involving impairment of inter-organ fat utilization. Conclusions: Loss of myostatin alters fatty acid uptake and oxidation in skeletal muscle and liver. We show that abnormally high metabolic activity of fat in myostatin null mice is decreased by a high-fat diet resulting in excessive adipose deposition and lipotoxicity. Collectively, our genetic loss-of-function studies offer an explanation of the lean phenotype displayed by a host of animals lacking myostatin signalling. Keywords: Muscle, Obesity, High-fat diet, Metabolism, Myostatin
Resumo:
Objective: The aim of this study was to evaluate the effect of a high-fat diet (HFD) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in rat pancreatic islets. We investigated if changes in NADPH oxidase are connected to beta cell dysfunction reported in obese animals. Methods: Male Wistar rats were fed a HFD or control diet for 3 months. DNA fragmentation, insulin secretion, and [U-(14)C] glucose oxidation were examined in isolated pancreatic islets. The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were assessed by immunohistochemistry. The protein content of gp91(phox) and p47(phox) was evaluated by Western blotting. Production of reactive oxygen species (ROS) was determined by a fluorescence assay using hydroethidine. Results: Occurrence of DNA fragmentation was reduced in pancreatic islets from HFD rats. There were no differences in oxidative stress markers between the groups. Glucose oxidation and insulin secretion were elevated due to high glucose in pancreatic islets from HFD rats. Protein concentrations of p47(phox) and gp91(phox) subunits were reduced and ROS production was diminished in pancreatic islets from HFD rats. Conclusions: The diminished content of NADPH oxidase subunits and ROS concentrations may be associated with increased glucose oxidation and insulin secretion in an attempt to compensate for the peripheral insulin resistance elicited by the HFD.