944 resultados para excess enthalpy of solution
Resumo:
We report high resolution solution 19F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF3-CH2-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6–10 mg), in dodecylmaltoside, were analyzed at 20°C by solution 19F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for 19F labels at positions 67 (−0.2 ppm) and 140 (−0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution 19F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation.
Resumo:
Work performed at the Argonne National Laboratory.
Resumo:
"Supported in part jointly by the Atomic Energy Commission and the Advanced Research Projects Agency (ARPA) under AEC Contract AT(11-1)-1018."
Resumo:
"Supported by the McDonnell Aircraft Corporation under Contract no. 6140-20 P. O. 7S4899-R. Purdue Research Foundation. Research project no. 1717. Project Ae-33.
Resumo:
Л. И. Каранджулов, Н. Д. Сиракова - В работата се прилага методът на Поанкаре за решаване на почти регулярни нелинейни гранични задачи при общи гранични условия. Предполага се, че диференциалната система съдържа сингулярна функция по отношение на малкия параметър. При определени условия се доказва асимптотичност на решението на поставената задача.
Resumo:
Postprint
Resumo:
Background. Cytomegalovirus (CMV) is a common cause of birth defects and hearing loss in infants and opportunistic infections in the immunocompromised. Previous studies have found higher CMV seroprevalence rates among minorities and among persons with lower socioeconomic status. No studies have investigated the geographic distribution of CMV and its relationship to age, race, and poverty in the community. Methods. We identified patients from 6 North Carolina counties who were tested in the Duke University Health System for CMV immunoglobulin G. We performed spatial statistical analyses to analyze the distributions of seropositive and seronegative individuals. Results. Of 1884 subjects, 90% were either white or African American. Cytomegalovirus seropositivity was significantly more common among African Americans (73% vs 42%; odds ratio, 3.31; 95% confidence interval, 2.7-4.1), and this disparity persisted across the life span. We identified clusters of high and low CMV odds, both of which were largely explained by race. Clusters of high CMV odds were found in communities with high proportions of African Americans. Conclusions. Cytomegalovirus seropositivity is geographically clustered, and its distribution is strongly determined by a community's racial composition. African American communities have high prevalence rates of CMV infection, and there may be a disparate burden of CMV-associated morbidity in these communities.
Resumo:
Metal oxide thin films are important for modern electronic devices ranging from thin film transistors to photovoltaics and functional optical coatings. Solution processed techniques allow for thin films to be rapidly deposited over a range of surfaces without the extensive processing of comparative vapour or physical deposition methods. The production of thin films of vanadium oxide prepared through dip-coating was developed enabling a greater understanding of the thin film formation. Mechanisms of depositing improved large area uniform coverage on a number of technologically relevant substrates were examined. The fundamental mechanism for polymer-assisted deposition in improving thin film surface smoothness and long range order has been delivered. Different methods were employed for adapting the alkoxide based dip-coating technique to produce a variety of amorphous and crystalline vanadium oxide based thin films. Using a wide range of material, spectroscopic and optical measurement techniques the morphology, structure and optoelectronic properties of the thin films were studied. The formation of pinholes on the surface of the thin films, due to dewetting and spinodal effects, was inhibited using the polymer assisted deposition technique. Uniform thin films with sub 50 nm thicknesses were deposited on a variety of substrates controlled through alterations to the solvent-alkoxide dilution ratios and employing polymer assisted deposition techniques. The effects of polymer assisted deposition altered the crystallized VO thin films from a granular surface structure to a polycrystalline structure composed of high density small in-plane grains. The formation of transparent VO based thin film through Si and Na substrate mediated diffusion highlighted new methods for material formation and doping.
Resumo:
An activated carbon was obtained by chemical activation with phosphoric acid, CM, from a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL-1, CMox2 and CMox5 nitric acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb2+ adsorption isotherms were determined by immersing activated carbons in aqueous solution. The surface area values of the adsorbents and total pore volume were approximately 560 m².g-1 and 0.36 cm³g-1, respectively. As regards chemical characteristics, activated carbons had higher acid sites content, 0.92-2.42 meq g-1, than basic sites, 0.63-0.12 meq g-1. pH values were between 7.4 and 4.5 at the point of zero charge, pH PZC. The adsorbed quantity of Pb2+ and the immersion enthalpy in solution of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7 mgg-1 and 27.6 Jg-1 respectively. Pb2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that showed the highest content of total acid sites on the surface.
Resumo:
Controlling the phase stability of ZrO2 nanoparticles is of major importance in the development of new ZrO2-based nanotechnologies. Because of the fact that in nanoparticles the surface accounts for a larger fraction of the total atoms, the relative phase stability can be controlled throughout the surface composition, which can be toned by surface excess of one of the components of the system., The objective of this work is to delineate a relationship between surface excess (or solid solution) of MgO relative to ZrO2 and the polymorphic stability of (ZrO2)(1-x) - (MgO), nanopowders, where 0.0 <= x <= 0.6. The nanopowders were prepared by a liquid precursor method at 500 degrees C and characterized by N-2 adsorption (BET), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), and Raman spectroscopy. For pure ZrO2 samples, both tetragonal and monoclinic polymorphs were detected, as expected considering the literature. For MgO molar fractions varying from 0.05 to 0.10, extensive solid solution could not be detected, and a ZrO2 surface energy reduction, caused by Mg surface excess detected by XPS, promoted tetragonal polymorph thermodynamic stabilization with relation to monoclinic. For MgO molar fractions higher than 0.10 and up to 0.40, Mg solid solution could be detected and induced cubic phase stabilization. MgO periclase was observed only at x = 0.6. A discussion based on the relationship between the surface excess, surface energy, and polymorph stability is presented.
Resumo:
Apparent thermodynamic functions, Gibbs energy, enthalpy and entropy of solution and mixing, for methocarbamol in ethanol + water mixtures, were evaluated from solubility data determined at temperatures from 293.15 K to 313.15 K and from calorimetric values of drug fusion. The drug solubility was greatest in the mixtures with 0.70 or 0.80 mass fraction of ethanol and lowest in neat water across all temperatures studied. Non-linear enthalpy-entropy compensation was found for the dissolution processes. Accordingly, solution enthalpy drives the respective processes in almost all the solvent systems analyzed.
Resumo:
The Mg-vacancy binding free enthalpy of Al-Cr solid solution alloys with Mg addition was calculated by electrical resistivity measurements. The obtained value is lower than that obtained for dilute Al-Mg alloys with almost the same Mg content and may be attributed to the diffusion of Mg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)