999 resultados para europium (III)
Resumo:
Stopper molecules attached to nanozeolite L (NZL) boost the luminescence of confined Eu3+-β-diketonate complexes. The mechanism that is responsible was elucidated by comparing two diketonate ligands of different pKa and two aromatic imines, and by applying stationary and time resolved spectroscopy. The result is that the presence of the imidazolium based stopper is favorable to the sustainable formation of Eu3+-β-diketonate complexes with high coordination by decreasing the proton strength inside the channels of NZL. A consequence is that strongly luminescent transparent films can be prepared using aqueous suspension of the stopper modified composites.
Resumo:
A new tetrakis praseodymium(tu) complex Pr(TFNB)(3)Phen has been synthesized, in which TFNB is 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione and Phen is 1,10-phenanthroline. Its crystal structure and luminescent spectra were successfully determined and investigated. The typical antenna effect existing in the luminescence of Pr(TFNB)(3)Phen was revealed by the study of the UV-Vis absorption spectra of ligands and the excitation spectrum of Pr(TFNB)(3)Phen.
Resumo:
Organo-functionalized MCM-41 containing non-covalently linked 1,10-phenanthroline (denoted as Phen-MCM-41) was synthesized by template-directed co-condensation of tetraethoxysilane and the modified phenanthroline (denoted as Phen-Si). XRD, FTIR, UV/VIS spectroscopy as well as luminescence spectroscopy were employed to characterize Phen-MCM-41. No disintegration or loss of the Phen-Si during the solvent extraction procedure could be observed. When monitored by the ligand absorption wavelength (272 nm), the undoped MCM-41 produces a broad band emission centered at 450 run, whereas europium (III) doped Phen-MCM-41 displays the emission of the Eu3+, i.e., D-5(0) --> F-7(J) (J = 0, 1, 2, 3, 4) transition lines due to the energy transfer from the ligands to Eu3+ as well as a broad band emission centered at 442 nm.
Resumo:
Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Luminescent ionogels were prepared by doping an europium( III) tetrakis beta-diketonate complex into an imidazolium ionic liquid, followed by immobilization of the ionic liquid by confinement in a silica network. The ionogels were obtained by a non-hydrolytic method as perfect monoliths featuring both the transparency of silica and the ionic conductivity performances of ionic liquids. The ionogels contain 80 vol % of ionic liquid. The organic-inorganic hybrid materials showed a very intense red photoluminescence under ultraviolet irradiation. The red emission has a very high coloric purity.
Photostability of a highly luminescent europium beta-diketonate complex in imidazolium ionic liquids
Resumo:
A high quantum yield and an enhanced photostability was found for a europium(III) tetrakis(2-thenoyltrifluoroacetonate) complex after dissolving the complex in a weakly-coordinating imidazolium ionic liquid.
Resumo:
The ability of new hydrophobic tridentate ligands based on 2,6-bis(benziinidazol-2-yl)pyridine, 2,6-bis(benzoxazol-2-yl)pyridine and 2,6-bis(benzothiazol-2-yl)pyridine to selectively extract americium(III) from europium(III) was measured. The most promising ligand-2,6-bis(benzoxazol-2-yl)-4-(2-decyl-1-tetradecyloxy)pyridine L-9 was found to give separation factors (SFAm/Eu) of up to 70 when used to extract cations from 0.02-0.10 M HNO3 into TPH in synergy with 2-bromodecanoic acid. Six structures of lanthanide complexes with 2,6-bis(benzoxazol-2-yl)pyridine L-6 were then determined to evaluate the types of species that are likely to be involved in the separation process. Three structural types were observed, namely [LnL(6)(NO3)(3)(H2O)2], 11-coordinate only for La, [LnL(6) (NO3)(3) (CH3CN)], 10-coordinate for Pr, Nd and Eu and [LnL(6) (NO3)(3)(H2O)], L 10-coordinate for Eu and Gd. Quantum Mechanics calculations were carried out on the tridentate ligands to elucidate the conformational preferences of the ligands in the free state and protonated and diprotonated forms and to assess the electronic properties of the ligands for comparison with other terdentate ligands used in lanthanide/actinide separation processes.
Resumo:
The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6'- bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]triazin-3-yl)-[2,2'] bipyridine (CyMe4-BTBP) has been studied. Since the extraction kinetics were slow, N,N'-dimethyl-N,N'-dioctyl-2-(2-hexyloxy-ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4-BTBP + 0.25 M DMDOHEMA in n -octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back-extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4-BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.
Resumo:
New hydrophobic, tridentate nitrogen heterocyclic reagents (BATPs) such as 2,6-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[1,2,4]triazin-3-yl) pyridine (1) and 2,6-bis(9,9,10,10-tetramethyl-9,10-dihydro-1,2,4-triaza-anthrane-3-yl) pyridine (2) have been studied. I is resistant to hydrolysis in 3 M nitric acid, whereas 2 is resistant to both acid hydrolysis and radiolysis. The molecules are able to give significantly enhanced separations of americium(III) from an excess of europium(III) in nitric acid. Typically, for 1 D-Am = 500 and SFAm,/Eu = 5000 compared with D-Am = 30 and SFAm /Eu = 400 with the reference molecule 2,6-bis(isopropyl[1,2,4]triazin-3-yl) pyridine (7). In order to increase the stability of 1 and 2, the labile alpha-benzylic hydrogens that are present in 7 have been replaced by alkyl groups. Three molecules of 1 are able to enclose completely the coordination sphere of the M(III) in the crystal structure of [Y(1)(3)][Y(NO3)(5)]center dot NO3 center dot 2.5H(2)O.
Resumo:
It has been established that 6-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines (R,hemi-BTPs) have properties which are intermediate between those of the terpyridines and the bis(1,2,4-triazin-3-yl)pyridines (BTPs). However, they resemble the terpyridines much more closely than the BTPs. It has been shown that Et, hemi-BTP when dissolved in TPH-a dodecane-like solvent-is a selective reagent for the separation of americium(III) from europium(III). Solution NMR in acetonitrile largely confirmed the crystallographic results. There was no evidence for a 1 : 3 complex cation, or for significant differences between metal(III)-N distances for the pyridine and 1,2,4-triazine rings. Intramolecular hydrogen bonding plays a crucial role in the formation of metal coordination spheres, which explains the differences between the terpyridyl, R,hemi-BTPs and the BTPs. Protonation of the R,hemi-BTPs facilitates a conformational change which is necessary for complexation.
Resumo:
Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this luminescent polycarbonate (PC) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(TTA)(3)(H(2)O)(2)] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry (TG). Due of the addition of rare earth [Eu(TTA)(3)(H(2)O)(2)] into PC matrix, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the (5)D(0) -> (7)F(J) transitions (J = 4-0) of Eu(3+) ion indicate the incorporation of the Eu(3+) ions in the polymer. The luminescent films show enhancement emission intensity with an increase of rare earth concentration in polymeric matrix accompanied by decrease in thermal stability.
Resumo:
The spray drying method was used to prepare luminescent microspheres. These microspheres were prepared by spraying an aqueous solution of dextrin and an europium(III) complex with subsequent drying in a hot medium. The spray dried powder was characterized by scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). Particle size distribution was estimated from SEM images. The ultrasonic spray drying technique was successfully applied to yield a microparticulated and red luminescent powder composed by the [Eu(dpa)(3)](3-) stop (dpa = dipicolinic acid) complex incorporated in dextrin microspheres.
Resumo:
This work reports on the photoluminescent properties of the complex diequatris(thenoyltrifluoroacetonate) europium(III), which was adsorbed or supported on tubes of modified surface silica matrix. The luminescence data and the experimental intensity parameter results evidence the existence of high interactions between the complex [Eu(tta)(3)(H2O)(2)] and the modified surface matrix. The anchored complex on macroporous silica shows higher intensity parameter values suggesting that the Eu-0 bond becomes more covalent than the adsorbed one. Therefore, the hypersensitive character of the D-5(0) --> F-7(2) transition increases evidencing a high contribution of the dynamic coupling mechanism possibly due to highly polarizable chemical environments occupied by europium(III) ion. The lifetimes of the complex on silica matrices were measured. (C) 2001 Elsevier B.V. Ltd. All rights reserved.