69 resultados para eucalypts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations. Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Native Mediterranean forests in Australia are dominated by two tree genera, Eucalyptus and Acacia, while Pinus and Eucalyptus dominate plantation forestry. In native forests, there is a high diversity of phloem and wood borers across several families in the Coleoptera and Lepidoptera. In the Coleoptera, cerambycid beetles (Cerambycidae), jewel beetles (Buprestidae), bark, ambrosia and pinhole beetles (Curculionidae) and pinworms (Lymexelidae) are some of the most commonly found beetles attacking eucalypts and acacias. In the Lepidoptera, wood moths (Cossidae), ghost moths (Hepialidae) and borers in the Xyloryctidae (subfamily Xyloryctinae) are most common. In contrast to native forests, there is a much more limited range of native insects present in Australian plantations, particularly in exotic Pinus spp. plantations, although eucalypt plantations do share some borers in common with native forests. This chapter reviews the importance of these borers in Australian forests primarily from an economic perspective (i.e. those species that cause damage to commercial tree species) and highlights a paucity of native forest species that commonly kill trees relative to the large scales regularly seen in North America and Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reforestation will have important consequences for the global challenges of mitigating climate change, arresting habitat decline and ensuring food security. We examined field-scale trade-offs between carbon sequestration of tree plantings and biodiversity potential and loss of agricultural land. Extensive surveys of reforestation across temperate and tropical Australia (N = 1491 plantings) were used to determine how planting width and species mix affect carbon sequestration during early development (< 15 year). Carbon accumulation per area increased significantly with decreasing planting width and with increasing proportion of eucalypts (the predominant over-storey genus). Highest biodiversity potential was achieved through block plantings (width > 40 m) with about 25% of planted individuals being eucalypts. Carbon and biodiversity goals were balanced in mixed-species plantings by establishing narrow belts (width < 20 m) with a high proportion (>75%) of eucalypts, and in monocultures of mallee eucalypt plantings by using the widest belts (ca. 6–20 m). Impacts on agriculture were minimized by planting narrow belts (ca. 4 m) of mallee eucalypt monocultures, which had the highest carbon sequestering efficiency. A plausible scenario where only 5% of highly-cleared areas (<30% native vegetation cover remaining) of temperate Australia are reforested showed substantial mitigation potential. Total carbon sequestration after 15 years was up to 25 Mt CO2-e year−1 when carbon and biodiversity goals were balanced and 13 Mt CO2-e year−1 if block plantings of highest biodiversity potential were established. Even when reforestation was restricted to marginal agricultural land (<$2000 ha−1 land value, 28% of the land under agriculture in Australia), total mitigation potential after 15 years was 17–26 Mt CO2-e year−1 using narrow belts of mallee plantings. This work provides guidance on land use to governments and planners. We show that the multiple benefits of young tree plantings can be balanced by manipulating planting width and species choice at establishment. In highly-cleared areas, such plantings can sequester substantial biomass carbon while improving biodiversity and causing negligible loss of agricultural land.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many plantation eucalypts are difficult to propagate from cuttings, and their rooted cuttings often possess very few adventitious roots. We microscopically examined the stem anatomy of cuttings from 12 species of eucalypts and we determined whether adventitious root formation in auxin-treated cuttings of four species was limited to particular positions around the vascular tissue. Most species contained a central pith that was arranged in a four-pointed stellate pattern. The surrounding vascular tissue was also arranged in a stellate pattern near the shoot apex but it developed a more rectangular shape at the outer phloem as the stems enlarged radially. Adventitious roots formed at, or slightly peripheral to, the vascular cambium, and they formed at both the corners and the sides of the rectangular-shaped vascular tissue. The study highlighted that auxin-treated eucalypt cuttings can produce roots at multiple positions around the vascular tissue and so propagation methods can aim to produce more than four adventitious roots per rooted cutting. Higher numbers of adventitious roots could improve the root system symmetry, stability, survival and growth rate of clonal eucalypt trees. © 2015 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian forest industries have a long history of export trade of a wide range of products from woodchips(for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in mperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design. This calculator forms part of the free interactive website www.timbers.com.au.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-hectare plots were sampled for bird species diversity in the Uttara Kannada district. These plots represented well-preserved evergreen/semievergreen forests, secondary/moist deciduous forests showing different levels of degradation by man and plantations of teak, eucalypts and betelnut. It was found that the betelnut plantation and the evergreen/semievergreen forests had the least bird species diversity ofH′ = 2.58 and 2.61 respectively. The eucalypt and teak plantations hadH′ = 2.69 and 2-92 respectively. In the secondary/moist deciduous forests it ranged from 2.80–3.39. Despite the apparent increase in diversity in the man-modified vegetation types, it was found that there was a gradual displacement of the bird species composition from what was typical to the evergreen forests to those of more urban and scrubby habitats in these man-modified vegetation types. This was particularly so in the eucalypt plantation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jarrah (Eucalyptus marginata Donn ex Sm.) plants, like many other eucalypts, can form symbiotic associations with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To study this tripartite relationship we developed a novel nurse-pot system to allow us to investigate the extent and temporal colonisation dynamics of jarrah by two AM species (Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. and Scutellospora calospora Nicol. & Gerd.) and two putative ECM species (Austroboletus occidentalis Watling & N.M. Greg. and Scleroderma sp.) and their potential effects on jarrah growth and nutrition. Our nurse-pot system, using jarrah as both the nurse plant and test plant, was developed to establish extraradical hyphal networks of both AM and ECM fungi that act as single or dual inoculum for test plants. Mycorrhizal colonisation was described and quantified, and growth and nutritional effects measured and analysed. Mycorrhizal colonisation increased with time for the test seedlings exposed to hyphae networks from S. calospora and Scleroderma sp. The nurse-pot system was effective at initiating colonisation of functioning AM or (putative) ECM systems separately but the ECM symbiosis was inhibited where a dual AM + ECM inoculum (R. irregularis and Scleroderma sp.) was present. The presence of S. calospora, A. occidentalis and Scleroderma sp. individually significantly increased the shoot biomass of seedlings compared with non-mycorrhizal controls. The two AM isolates had different physiological effects on jarrah plants. S. calospora improved growth and micronutrient uptake of jarrah seedlings whereas no positive response was observed with R. irregularis. In addition, as an interesting observation, the non-responsive AM fungus R. irregularis suppressed the ECM symbiosis in dually inoculated plants where ECM structures, positive growth response and nutritional effects were absent. When inoculated individually, ECM isolates dominated the growth response and uptake of P and other nutrients in this dual symbiotic plant. Despite the positive growth response in the A. occidentalis treatment, ECM structures were not observed in either nurse or test seedlings. From the effects of A. occidentalis on jarrah we hypothesise that this fungus forms a functional mycorrhizal-type partnership even without forming archetypal structures in and on the root

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-rays were initially used for the inspection of special-purpose wood pieces for quantitative evaluation properties of different species. X-ray densitometry has had its use expanded ill dendroclimatology of Picea engelmannii trees. Subsequent laboratories developed applications of X-ray densitometry for environmental, wood science and technology, and related areas. This paper describes the basic methodology of X-ray densitometry applied to the eucalypt wood analysis, as well its presenting the results of applications in three areas: (i) evaluation of wood biodegradation by white rot fungi, (ii) detection of sapwood and heartwood, and (iii) determination of the effect of management oil wood properties. The wood decayed by white rot fungi was detected by X-ray densitometry with it decreasing wood density due to the biodegradation of cell wall components. The sapwood and heartwood of eucalypts were separated in response to the attenuation of X-rays, reflected by the wood anatomical structure and chemical composition. Also, Ill eucalypt trees after the application of irrigation and i characteristic wood density profiles were detected. Ill addition, the significant potential of X-ray densitometry for eucalypt wood research and analysis is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some Eucalyptus species are widely used as a plantation crop in tropical and subtropical regions. One reason for this is the diversity of end uses, but the main reason is the high level of wood production obtained from commercial plantings. With the advancement of biotechnology it will be possible to expand the geographical area in which eucalypts can be used as commercial plantation crops, especially in regions with current climatic restrictions. Despite the popularity of eucalypts and their increasing range, questions still exist, in both traditional planting areas and in the new regions: Can eucalypts invade areas of native vegetation, causing damage to natural ecosystems biodiversity?The objective of this study it was to assess whether eucalypts can invade native vegetation fragments in proximity to commercial stands, and what factors promote this invasive growth. Thus, three experiments were established in forest fragments located in three different regions of Brazil. Each experiment was composed of 40 plots (1 m(2) each one), 20 plots located at the border between the forest fragment and eucalypts plantation, and 20 plots in the interior of the forest fragments. In each experimental site, the plots were paired by two soil exposure conditions, 10 plots in natural conditions and 10 plots with soil exposure (no plant and no litter). During the rainy season, 2 g of eucalypts seeds were sown in each plot, including Eucalyptus grandis or a hybrid of E. urophylla x E. grandis, the most common commercial eucalypt species planted in the three region. At 15, 30, 45, 90, 180, 270 and 360 days after sowing, we assessed the number of seedlings of eucalypts and the number of seedlings of native species resulting from natural regeneration. Fifteen days after sowing, the greatest number of eucalypts seedlings (37 m(-2)) was observed in the plots with lower luminosity and exposed soil. Also, for native species, it was observed that exposed soil improved natural germination reaching the highest number of 163 seedlings per square meter. Site and soil exposure were the factors that have the greatest influence on seed germination of both eucalypt and native species. However, 270 days after sowing, eucalypt seedlings were not observed at any of the three experimental sites. The result shows the inability of eucalypts to adapt to condition outside of their natural range. However, native species demonstrated their strong capacity for natural regeneration in forest fragments under the same conditions where eucalypts were seeded. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bats correspond to 20% of the extant mammal species and, with a few exceptions, use echolocation, a spacial orientation system based on emission and analysis of echoes from sound waves, generally ultrasounds. Echolocation was discovered in the 1940 s and since the 1970 s ultrasound detectors have been commercially available, allowing the investigation of several aspects of the natural history and ecology of bats. Passive acoustic monitoring has been frequently used in habitat use studies, predominantly in North America and Europe, by comparing the number of bat passes between different habitat types. This dissertation presents the first evaluation of the spacial and seasonal variation patterns in the activity of insectivorous bats in the Brazilian biome Pampa, in the state of Rio Grande do Sul. Since bat activity can vary according to habitat type, time of year and climatic conditions, the following hypotheses were tested: 1. bat activity varies between different types of habitat; 2. bat activity varies seasonally; 3. bat activity is influenced by temperature, humidity and wind speed. The acoustic samples were taken along fixed transects of 1500 meters, which were monitored monthly from April 2009 to March 2010. Five habitat types were sampled: eucalypts, stream, riparian forest, wetland and grassland. In each sample, the number of bat passes was obtained by using an ultrasound detector Pettersson D230. A total of 1183 bat passes were registered. Greater bat activity levels was observed along large eucalypts (1.93 bat passes/3min) and along a stream (1.61 bat passes/3 min). A riparian forest (0.94 bat passes/3 min) and a wetland area (0.61 bat passes/3 min) exhibited statistically equal levels of activity. Bat passes were fewer in grassland areas (0,16 bat passes/3 min). Bat activity was not correlated with abiotic factors. However, bat activity was significantly low in the colder season, winter, and was similar in autumn, spring and summer. The observed preference for vegetation borders and water courses agrees with reports from other countries and is attributed predominantly to the high prey abundance in these types of environments. Additionally, low activity in the winter is probably a response to the reduced availability of insects, and to lower temperatures. Our results indicate which areas of arboreal vegetation and water courses should be priorities for the conservation of bats and that alterations of these habitat types might negatively influence bat activity in the region