924 resultados para elliptic curve
Resumo:
Along with the growing demand for cryptosystems in systems ranging from large servers to mobile devices, suitable cryptogrophic protocols for use under certain constraints are becoming more and more important. Constraints such as calculation time, area, efficiency and security, must be considered by the designer. Elliptic curves, since their introduction to public key cryptography in 1985 have challenged established public key and signature generation schemes such as RSA, offering more security per bit. Amongst Elliptic curve based systems, pairing based cryptographies are thoroughly researched and can be used in many public key protocols such as identity based schemes. For hardware implementions of pairing based protocols, all components which calculate operations over Elliptic curves can be considered. Designers of the pairing algorithms must choose calculation blocks and arrange the basic operations carefully so that the implementation can meet the constraints of time and hardware resource area. This thesis deals with different hardware architectures to accelerate the pairing based cryptosystems in the field of characteristic two. Using different top-level architectures the hardware efficiency of operations that run at different times is first considered in this thesis. Security is another important aspect of pairing based cryptography to be considered in practically Side Channel Analysis (SCA) attacks. The naively implemented hardware accelerators for pairing based cryptographies can be vulnerable when taking the physical analysis attacks into consideration. This thesis considered the weaknesses in pairing based public key cryptography and addresses the particular calculations in the systems that are insecure. In this case, countermeasures should be applied to protect the weak link of the implementation to improve and perfect the pairing based algorithms. Some important rules that the designers must obey to improve the security of the cryptosystems are proposed. According to these rules, three countermeasures that protect the pairing based cryptosystems against SCA attacks are applied. The implementations of the countermeasures are presented and their performances are investigated.
Resumo:
In the field of embedded systems design, coprocessors play an important role as a component to increase performance. Many embedded systems are built around a small General Purpose Processor (GPP). If the GPP cannot meet the performance requirements for a certain operation, a coprocessor can be included in the design. The GPP can then offload the computationally intensive operation to the coprocessor; thus increasing the performance of the overall system. A common application of coprocessors is the acceleration of cryptographic algorithms. The work presented in this thesis discusses coprocessor architectures for various cryptographic algorithms that are found in many cryptographic protocols. Their performance is then analysed on a Field Programmable Gate Array (FPGA) platform. Firstly, the acceleration of Elliptic Curve Cryptography (ECC) algorithms is investigated through the use of instruction set extension of a GPP. The performance of these algorithms in a full hardware implementation is then investigated, and an architecture for the acceleration the ECC based digital signature algorithm is developed. Hash functions are also an important component of a cryptographic system. The FPGA implementation of recent hash function designs from the SHA-3 competition are discussed and a fair comparison methodology for hash functions presented. Many cryptographic protocols involve the generation of random data, for keys or nonces. This requires a True Random Number Generator (TRNG) to be present in the system. Various TRNG designs are discussed and a secure implementation, including post-processing and failure detection, is introduced. Finally, a coprocessor for the acceleration of operations at the protocol level will be discussed, where, a novel aspect of the design is the secure method in which private-key data is handled
Resumo:
In this paper a novel scalable public-key processor architecture is presented that supports modular exponentiation and Elliptic Curve Cryptography over both prime GF(p) and binary GF(2) extension fields. This is achieved by a high performance instruction set that provides a comprehensive range of integer and polynomial basis field arithmetic. The instruction set and associated hardware are generic in nature and do not specifically support any cryptographic algorithms or protocols. Firmware within the device is used to efficiently implement complex and data intensive arithmetic. A firmware library has been developed in order to demonstrate support for numerous exponentiation and ECC approaches, such as different coordinate systems and integer recoding methods. The processor has been developed as a high-performance asymmetric cryptography platform in the form of a scalable Verilog RTL core. Various features of the processor may be scaled, such as the pipeline width and local memory subsystem, in order to suit area, speed and power requirements. The processor is evaluated and compares favourably with previous work in terms of performance while offering an unparalleled degree of flexibility. © 2006 IEEE.
Resumo:
New FPGA architectures for the ordinary Montgomery multiplication algorithm and the FIOS modular multiplication algorithm are presented. The embedded 18×18-bit multipliers and fast carry look-ahead logic located on the Xilinx Virtex2 Pro family of FPGAs are used to perform the ordinary multiplications and additions/subtractions required by these two algorithms. The architectures are developed for use in Elliptic Curve Cryptosystems over GF(p), which require modular field multiplication to perform elliptic curve point addition and doubling. Field sizes of 128-bits and 256-bits are chosen but other field sizes can easily be accommodated, by rapidly reprogramming the FPGA. Overall, the larger the word size of the multiplier, the more efficiently it performs in terms of area/time product. Also, the FIOS algorithm is flexible in that one can tailor the multiplier architecture is to be area efficient, time efficient or a mixture of both by choosing a particular word size. It is estimated that the computation of a 256-bit scalar point multiplication over GF(p) would take about 4.8 ms.
Resumo:
These notes have been issued on a small scale in 1983 and 1987 and on request at other times. This issue follows two items of news. First, WaIter Colquitt and Luther Welsh found the 'missed' Mersenne prime M110503 and advanced the frontier of complete Mp-testing to 139,267. In so doing, they terminated Slowinski's significant string of four consecutive Mersenne primes. Secondly, a team of five established a non-Mersenne number as the largest known prime. This result terminated the 1952-89 reign of Mersenne primes. All the original Mersenne numbers with p < 258 were factorised some time ago. The Sandia Laboratories team of Davis, Holdridge & Simmons with some little assistance from a CRAY machine cracked M211 in 1983 and M251 in 1984. They contributed their results to the 'Cunningham Project', care of Sam Wagstaff. That project is now moving apace thanks to developments in technology, factorisation and primality testing. New levels of computer power and new computer architectures motivated by the open-ended promise of parallelism are now available. Once again, the suppliers may be offering free buildings with the computer. However, the Sandia '84 CRAY-l implementation of the quadratic-sieve method is now outpowered by the number-field sieve technique. This is deployed on either purpose-built hardware or large syndicates, even distributed world-wide, of collaborating standard processors. New factorisation techniques of both special and general applicability have been defined and deployed. The elliptic-curve method finds large factors with helpful properties while the number-field sieve approach is breaking down composites with over one hundred digits. The material is updated on an occasional basis to follow the latest developments in primality-testing large Mp and factorising smaller Mp; all dates derive from the published literature or referenced private communications. Minor corrections, additions and changes merely advance the issue number after the decimal point. The reader is invited to report any errors and omissions that have escaped the proof-reading, to answer the unresolved questions noted and to suggest additional material associated with this subject.
Resumo:
Esta dissertação apresenta o desenvolvimento de um novo algoritmo de criptografia de chave pública. Este algoritmo apresenta duas características que o tornam único, e que foram tomadas como guia para a sua concepção. A primeira característica é que ele é semanticamente seguro. Isto significa que nenhum adversário limitado polinomialmente consegue obter qualquer informação parcial sobre o conteúdo que foi cifrado, nem mesmo decidir se duas cifrações distintas correspondem ou não a um mesmo conteúdo. A segunda característica é que ele depende, para qualquer tamanho de texto claro, de uma única premissa de segurança: que o logaritmo no grupo formado pelos pontos de uma curva elíptica de ordem prima seja computacionalmente intratável. Isto é obtido garantindo-se que todas as diferentes partes do algoritmo sejam redutíveis a este problema. É apresentada também uma forma simples de estendê-lo a fim de que ele apresente segurança contra atacantes ativos, em especial, contra ataques de texto cifrado adaptativos. Para tanto, e a fim de manter a premissa de que a segurança do algoritmo seja unicamente dependente do logaritmo elíptico, é apresentada uma nova função de resumo criptográfico (hash) cuja segurança é baseada no mesmo problema.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
This paper presents the design of a high-speed coprocessor for Elliptic Curve Cryptography over binary Galois Field (ECC- GF(2m)). The purpose of our coprocessor is to accelerate the scalar multiplication performed over elliptic curve points represented by affine coordinates in polynomial basis. Our method consists of using elliptic curve parameters over GF(2163) in accordance with international security requirements to implement a bit-parallel coprocessor on field-programmable gate-array (FPGA). Our coprocessor performs modular inversion by using a process based on the Stein's algorithm. Results are presented and compared to results of other related works. We conclude that our coprocessor is suitable for comparing with any other ECC-hardware proposal, since its speed is comparable to projective coordinate designs.
Resumo:
A JME-compliant cryptographic library for mobile application development is introduced in this paper. The library allows cryptographic protocols implementation over elliptic curves with different security levels and offers symmetric and asymmetric bilinear pairings operations, as Tate, Weil, and Ate pairings.
Resumo:
Three-party password-authenticated key exchange (3PAKE) protocols allow entities to negotiate a secret session key with the aid of a trusted server with whom they share a human-memorable password. Recently, Lou and Huang proposed a simple 3PAKE protocol based on elliptic curve cryptography, which is claimed to be secure and to provide superior efficiency when compared with similar-purpose solutions. In this paper, however, we show that the solution is vulnerable to key-compromise impersonation and offline password guessing attacks from system insiders or outsiders, which indicates that the empirical approach used to evaluate the scheme's security is flawed. These results highlight the need of employing provable security approaches when designing and analyzing PAKE schemes. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The following is adapted from the notes for the lecture. It announces results and conjectures about values of the p-adic L function of the symmetric square of an elliptic curve.
Resumo:
In the last 15 years, many class number formulas and main conjectures have been proven. Here, we discuss such formulas on the Selmer groups of the three-dimensional adjoint representation ad(φ) of a two-dimensional modular Galois representation φ. We start with the p-adic Galois representation φ0 of a modular elliptic curve E and present a formula expressing in terms of L(1, ad(φ0)) the intersection number of the elliptic curve E and the complementary abelian variety inside the Jacobian of the modular curve. Then we explain how one can deduce a formula for the order of the Selmer group Sel(ad(φ0)) from the proof of Wiles of the Shimura–Taniyama conjecture. After that, we generalize the formula in an Iwasawa theoretic setting of one and two variables. Here the first variable, T, is the weight variable of the universal p-ordinary Hecke algebra, and the second variable is the cyclotomic variable S. In the one-variable case, we let φ denote the p-ordinary Galois representation with values in GL2(Zp[[T]]) lifting φ0, and the characteristic power series of the Selmer group Sel(ad(φ)) is given by a p-adic L-function interpolating L(1, ad(φk)) for weight k + 2 specialization φk of φ. In the two-variable case, we state a main conjecture on the characteristic power series in Zp[[T, S]] of Sel(ad(φ) ⊗ ν−1), where ν is the universal cyclotomic character with values in Zp[[S]]. Finally, we describe our recent results toward the proof of the conjecture and a possible strategy of proving the main conjecture using p-adic Siegel modular forms.
Resumo:
2000 Mathematics Subject Classification: 11G15, 11G18, 14H52, 14J25, 32L07.
Resumo:
Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ɳT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications.
Resumo:
本文通过形状约束方程(组)与一般主动轮廓模型结合,将目标形状与主动轮廓模型融合到统一能量泛函模型中,提出了一种形状保持主动轮廓模型即曲线在演化过程中保持为某一类特定形状。模型通过参数化水平集函数的零水平集控制演化曲线形状,不仅达到了分割即目标的目的,而且能够给出特定目标的定量描述。根据形状保持主动轮廓模型,建立了一个用于椭圆状目标检测的统一能量泛函模型,导出了相应的Euler-Lagrange常微分方程并用水平集方法实现了椭圆状目标检测。此模型可以应用于眼底乳头分割,虹膜检测及相机标定。实验结果表明,此模型不仅能够准确的检测出给定图像中的椭圆状目标,而且有很强的抗噪、抗变形及遮挡性能。