107 resultados para ellipse
Resumo:
Este trabajo ha sido realizado en el marco del Grupo de Investigación Consolidado GIC 07/21-IT.288.07.
Resumo:
O objetivo deste trabalho foi estabelecer um modelo empregando-se ferramentas de regressão multivariada para a previsão do teor em ésteres metílicos e, simultaneamente, de propriedades físico-químicas de misturas de óleo de soja e biodiesel de soja. O modelo foi proposto a partir da correlação das propriedades de interesse com os espectros de reflectância total atenuada no infravermelho médio das misturas. Para a determinação dos teores de ésteres metílicos foi utilizada a cromatografia líquida de alta eficiência (HPLC), podendo esta ser uma técnica alternativa aos método de referência que utilizam a cromatografia em fase gasosa (EN 14103 e EN 14105). As propriedades físico-químicas selecionadas foram índice de refração, massa específica e viscosidade. Para o estudo, foram preparadas 11 misturas com diferentes proporções de biodiesel de soja e de óleo de soja (0-100 % em massa de biodiesel de soja), em quintuplicata, totalizando 55 amostras. A região do infravermelho estudada foi a faixa de 3801 a 650 cm-1. Os espectros foram submetidos aos pré-tratamentos de correção de sinal multiplicativo (MSC) e, em seguida, à centralização na média (MC). As propriedades de interesse foram submetidas ao autoescalamento. Em seguida foi aplicada análise de componentes principais (PCA) com a finalidade de reduzir a dimensionalidade dos dados e detectar a presença de valores anômalos. Quando estes foram detectados, a amostra era descartada. Os dados originais foram submetidos ao algoritmo de Kennard-Stone dividindo-os em um conjunto de calibração, para a construção do modelo, e um conjunto de validação, para verificar a sua confiabilidade. Os resultados mostraram que o modelo proposto por PLS2 (Mínimos Quadrados Parciais) foi capaz de se ajustar bem os dados de índice de refração e de massa específica, podendo ser observado um comportamento aleatório dos erros, indicando a presença de homocedasticidade nos valores residuais, em outras palavras, o modelo construído apresentou uma capacidade de previsão para as propriedades de massa específica e índice de refração com 95% de confiança. A exatidão do modelo foi também avaliada através da estimativa dos parâmetros de regressão que são a inclinação e o intercepto pela Região Conjunta da Elipse de Confiança (EJCR). Os resultados confirmaram que o modelo MIR-PLS desenvolvido foi capaz de prever, simultaneamente, as propriedades índice de refração e massa específica. Para os teores de éteres metílicos determinados por HPLC, foi também desenvolvido um modelo MIR-PLS para correlacionar estes valores com os espectros de MIR, porém a qualidade do ajuste não foi tão boa. Apesar disso, foi possível mostrar que os dados podem ser modelados e correlacionados com os espectros de infravermelho utilizando calibração multivariada
Resumo:
There is ample evidence that humans are able to control the endpoint impedance of their arms in response to active destabilizing force fields. However, such fields are uncommon in daily life. Here, we examine whether the CNS selectively controls the endpoint impedance of the arm in the absence of active force fields but in the presence of instability arising from task geometry and signal-dependent noise (SDN) in the neuromuscular system. Subjects were required to generate forces, in two orthogonal directions, onto four differently curved rigid objects simulated by a robotic manipulandum. The endpoint stiffness of the limb was estimated for each object curvature. With increasing curvature, the endpoint stiffness increased mainly parallel to the object surface and to a lesser extent in the orthogonal direction. Therefore, the orientation of the stiffness ellipses did not orient to the direction of instability. Simulations showed that the observed stiffness geometries and their pattern of change with instability are the result of a tradeoff between maximizing the mechanical stability and minimizing the destabilizing effects of SDN. Therefore, it would have been suboptimal to align the stiffness ellipse in the direction of instability. The time course of the changes in stiffness geometry suggests that modulation takes place both within and across trials. Our results show that an increase in stiffness relative to the increase in noise can be sufficient to reduce kinematic variability, thereby allowing stiffness control to improve stability in natural tasks.
Resumo:
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.
Resumo:
Kerberos是一个成熟的产品,广泛应用于金融、邮电、保险等行业.但仍存在一些隐患,例如:重放攻击、密码猜测、会话中选择明文攻击等等.该文针对Kerberos系统登录时可能遭到密码猜测,即所谓的离线字典攻击(Off line Dictionary Attack)的问题,提出一种基于椭圆曲线的零知识证明方法对系统进行改进,并给出相应的协议.
Resumo:
Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.
Resumo:
Breakup process of polyamide 6 (PA6) in polypropylene (PP) matrix under shear flow was online studied by using a Linkam CSS 450 stage equipped with optical microscopy. Both tip streaming and fracture breakup modes of PA6 droplets were observed in this study. It was reported that the droplet would break up by tip streaming model when the radio of the droplet phase viscosity to the matrix phase viscosity (n(r) = n(d)/n(m)) is smaller than 0.1 (Taylor, Proc R Soc London A 1934, 146, 501; Grace, Chem Eng Commun 1982, 14, 225; Bartok and Mason, J Colloid Sci 1959, 14, 13; Rumscheidt and Mason, J Colloid Sci 1961, 16, 238; de Bruijn, Chem Eng Sci 1993, 48, 277). However, the tip streaming model was observed even when the viscosity ratio was much greater than 0.1 (n(r) = 1.9). In this study for the tip streaming mode, small droplets were ruptured from the tip of the mother droplet. On the other hand, the mother droplet was broken into two or more daughter droplets with one or several satellite droplets between them for the fracture mode. It was found that PA6 droplet was much elongated at first, and then broke up via tip streaming or fracture to form daughter droplets or small satellite droplets with the shape of fiber or ellipse.
Resumo:
A three-dimensional ocean circulation model, called Princeton Ocean Model (POM), is employed to simulate tides and tidal currents in Liaodong Bay. The nested grid technique is adopted to improve the computation precision. Computed harmonic constants of M-1, M-2 tides at five tidal gauge stations and surface elevations at two oil platforms are compared with those observed, and show good agreements with them. Based on the calculated results, the co-amplitude and co-phase tag lines of nil and M-2 tidal constituents, the residual current field of M-2 constituent, tidal form, tidal Current ellipse and the moving style of tidal current are given. It is found that diurnal tidal constituents have no amphidromic point whereas semi-diurnal constituents have one in the region of interest. Meanwhile, some meaningful results are concluded and presented, which are conducive to a thorough knowledge of the characteristics of tides and tidal currents in the Liaodong Bay.
Resumo:
基于旋转体的摄像机定位是单目合作目标定位领域中的涉及较少并且较为困难的一个问题,传统的基于点基元、直线基元及曲线基元的定位方法在用于旋转体定位过程中都存在相应的问题.文中设计了一种由4个相切椭圆构成的几何模型,该模型环绕于圆柱体表面,利用二次曲线的投影仍然是二次曲线的特性和椭圆的相应性质能够得到唯一确定模型位置的3个坐标点,从而将旋转体定位问题转化为P3P问题.在对P3P的解模式区域进行分析后,推导了根据模型上可视曲线的弯曲情况来确定P3P问题解模式的判别方法,并给出证明过程.仿真实验表明了这种模型定位方法的有效性.最后利用这个模型引导机械手完成目标定位的实验.
Resumo:
本文设计了一种由4个相切椭圆构成的几何模型,该模型环绕于圆柱体表面,利用二次曲线的投影仍然是二次曲线的特性和椭圆的相应性质能够得到唯一确定模型位置的4个共面的坐标点,从而将旋转体定位问题转化为共面P4P问题.利用P4P的线性算法,即可唯一确定圆柱体模型的位置和姿态.最后利用这种定位方法进行了仿真实验,实验结果表明这种方法的有效性。
Resumo:
In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a series researches are conducted on fracture reservoir prediction technology in general,and it especially focus on some difficult points. The technological series which integrated amplitude preserved data processing、interpretation and its comprehensive application research as a whole were developed and this new method can be applied to the other similar oilfield exploration and development. The contents and results in this paper are listed as follows: 1. An overview was given on the status and development of fracture reservoir estimation technique, compare and analyze those geophysical prediction methods. This will be very helpful to the similar reservoir researches. 2. Analyze and conclude the characters of geologies and well logging response of burial hills fracture reservoir, those conclusions are used to steer the geophysical research and get satisfying results. 3. Forward modeling anisotropy seismic response of fracture reservoir. Quantitatively describe the azimuthal amplitude variation. Amplitude ellipse at each incidence angle is used to identify the fracture orientation. 4. Numerical simulation of structure stress based on finite difference method is carried out. Quantitatively describe and analyze the direction and intensity of fracture. 5. Conventional attributes extraction of amplitude preserved seismic data、attributes with different azimuthal angle and different offset are used to determine the relationship between the results and fracture distribution. 6. With spectrum decomposition method based on wavelet transform, the author disclose the reservoir distribution in space. It is a powerful tool to display its anisotropy. 7. Integrated seismic wave impendence、elastic impendence、spectrum decomposition、attribute extraction、fracture analysis result as a whole to identify and evaluate the fracture reservoir. An optimum workflow is constructed. It is used to practical oil&gas production and good results are obtained. This can indicate the wide foreground of this technique series.
Resumo:
With the development of the technology of earthquake observation, more and more researchers work at many fields' of seismicity using seismic kinetic property, as the result, the study of attenuation has also made great progress, especially in the mechanism of the attenuation and the physical process. Aki put forward single back scattering theory to explain the forming of the seismic coda wave in 1969. Then, researchers started to develop the study in seismic scattering and attenuation. My thesis is also based on that theory. We assume that the Lg wave is a superposition fo high-mode surface waves, the coda of Lg is caused by scattering. Sato proposed Single Isotropic Scattering model (SIS model) to interpreted the scatter property, and he also formulated the geometrical spreading term. Then Xie (1988) developed the single spectral-ratio (SSR) method to obtain the Lg coda Q and the frequency dependent factor n. Later, he get to lateral images in the area of scatter ellipse. SSR method is explored and used in the study of Lg coda waves of regional earthquakes in my thesis. Choosing the earthquakes records with high ratio of signal-noise ,which were recorded at the stations from 1989 to 1999, we obtain the single trace Lg coda Q and its frequency dependent factor n. The results proved that SIS model is the reasonable model to explain the Lg coda wave, and SSR method also can be used to process Lg coda of regional earthquakes to get to the satisfied Lg coda Q. Based on the Lg coda Q we obtained using the former method, we explore the programs to inverse the regional Lg coda Q independently, and then make use of them to inverse the Lg coda Q of Beijing and adjacent area. The inversion result is satisfied. We conclude that the distribution of Qo (Q in lHz) is marked by the inhomogeneity, which is related to the tectonic structure: The value of Qo in uplift area, for example, Yanshan uplift, Taihang uplift, Luxi Uplift, is higher than the depression area, for example, Jizhong depression, Huanghua depression, and Jiyang depression, and the border between the higher Q area and lower Q area is very clear; Lg coda Q is also related to the velocity structure, higher velocity area is also with higher Q, lower velocity area is with lower Q; and higher heat-flow area is companied with lower Q. All in all, the value of Q reflects the difference of characteristics of lithofaces, porosity, the liquid content between the pores and heat flow. So, the Q value difference between uplift area and depression area reveals the difference of tectonic structure, lithology and physical character of the rock. So, the study of Lg coda Q is help to understand the earthquakes propagation mechanism through the inhomogenous medium, the cause of the coda, attenuation mechanism of the coda. Making use of the lateral images of Q, with velocity images, heat flow results, and other experimental result, we will be promoted to understand the complex structure of the crust, its inhomogenous character, and so on.
Resumo:
Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 μm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results.
Resumo:
The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.
Resumo:
Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.