1000 resultados para electroweak model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that in 3-3-1 models there exist a natural relation among the SU(3)(L) coupling constant g, the electroweak mixing angle theta(W), the mass of the W, and one of the vacuum expectation values, which implies that those models can be realized at low energy scales and, in particular, even at the electroweak scale. So that, being that symmetries realized in Nature, new physics may be really just around the corner. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that some models with SU(3)(C)circle times SU(3)(L)circle times U(1)(X) gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2)(L+R) symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1)(X)'s coupling constant, g(X), the sine of the weak mixing angle sin theta(W), and the mass of the W boson, M-W. In the limit in which this symmetry is valid it avoids the tree level mixing of the Z boson of the standard model with the extra Z(') boson. We have verified that the oblique T parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3)(L+R) custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, since the seesaw mechanism is mandatory to obtain light active neutrinos. Moreover, the approximate SU(2)(L+R)subset of SU(3)(L+R) symmetry implies that the extra nonstandard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compute the survival probability {vertical bar S vertical bar(2)} of large rapidity gaps (LRG) in a QCD based eikonal model with a dynamical gluon mass, where this dynamical infrared mass scale represents the onset of nonperturbative contributions to the diffractive hadron-hadron scattering. Since rapidity gaps can occur in the case of Higgs boson production via fusion of electroweak bosons, we focus on WW -> H fusion processes and show that the resulting {vertical bar S vertical bar(2)} decreases with the increase of the energy of the incoming hadrons; in line with the available experimental data for LRG. We obtain {vertical bar S vertical bar(2)} = 27.6 +/- 7.8% (18.2 +/- 17.0%) at Tevatron (CERN-LHC) energy for a dynamical gluon mass m(g) = 400 MeV. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a. light-front framework, we calculate electroweak transition form factor for the semileptonic decay of D mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of electroweak symmetry breaking ( EWSB) will be directly scrutinized soon at the CERN Large Hadron Collider. We analyze the LHC potential to look for new vector bosons associated with the EWSB sector, presenting a possible model independent approach to search for these new spin-1 resonances. We show that the analyses of the processes pp -> l(+)l(1-)E(T), l +/- jjE(T), l(1 +/-)l(+)l(-)E(T), l(+/-)jjE(T), and l(+)l(-) jj (with l, l' = e or mu and j = jet) have a large reach at the LHC and can lead to the discovery or exclusion of many EWSB scenarios such as Higgsless models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a model for the electroweak interactions with the SU(3)(L) circle times U(1)(N) gauge symmetry. We show that the conservation of the quantum number F = L+B forbids the appearance of massive neutrinos and the neutrinoless double-beta decay (beta beta)(0 nu). Explicit or/and spontaneous breaking of F implies that the neutrinos have an arbitrary mass. In addition the (beta beta)(0 nu) decay also has some channels that do not depend explicitly on the neutrino mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an SU(3)L x U(1)N model for the electroweak interactions which includes extra charged leptons which do not mix with the known leptons. These new leptons couple to Z0 only through vector currents. We consider constraints on the mass of one of these leptons coming from the Z0 width and from the muon (g - 2) factor. The last one is less restrictive than the former.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We point out that if the Majoron-like scheme is implemented within a 3-3-1 model, there must exist at least three different mass scales for the scalar vacuum expectation values in the model. ©1999 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct connection between physical parameters of general two-Higgs-doublet model (2HDM) potentials after electroweak symmetry breaking (EWSB) and the parameters that define the potentials before EWSB is established. These physical parameters, such as the mass matrix of the neutral Higgs bosons, have well-defined transformation properties under basis transformations transposed to the fields after EWSB. The relations are also explicitly written in a basis covariant form. Violation of these relations may indicate models beyond 2HDMs. In certain cases the whole potential can be defined in terms of the physical parameters. The distinction between basis transformations and reparametrizations is pointed out. Some physical implications are discussed. © 2008 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If the electroweak symmetry breaking is originated from a strongly coupled sector, as for instance in composite Higgs models, the Higgs boson couplings can deviate from their Standard Model values. In such cases, at sufficiently high energies there could occur an onset of multiple Higgs boson and longitudinally polarised electroweak gauge boson (V L ) production. We study the sensitivity to anomalous Higgs couplings in inelastic processes with 3 and 4 particles (either Higgs bosons or V L 's) in the final state. We show that, due to the more severe cancellations in the corresponding amplitudes as compared to the usual 2 → 2 processes, large enhancements with respect to the Standard Model can arise even for small modifications of the Higgs couplings. In particular, we find that triple Higgs production provides the best multiparticle channel to look for these deviations. We briefly explore the consequences of multiparticle production at the LHC. © 2013 SISSA.