894 resultados para dual-specificity phosphatases


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: HIV-1 RNA viral load is a key parameter for reliable treatment monitoring of HIV-1 infection. Accurate HIV-1 RNA quantitation can be impaired by primer and probe sequence polymorphisms as a result of tremendous genetic diversity and ongoing evolution of HIV-1. A novel dual HIV-1 target amplification approach was realized in the quantitative COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 (HIV-1 TaqMan test v2.0) to cope with the high genetic diversity of the virus. OBJECTIVES AND STUDY DESIGN: The performance of the new assay was evaluated for sensitivity, dynamic range, precision, subtype inclusivity, diagnostic and analytical specificity, interfering substances, and correlation with the COBAS AmpliPrep/COBAS TaqMan HIV-1 (HIV-1 TaqMan test v1.0) predecessor test in patients specimens. RESULTS: The new assay demonstrated a sensitivity of 20 copies/mL, a linear measuring range of 20-10,000,000 copies/mL, with a lower limit of quantitation of 20 copies/mL. HIV-1 Group M subtypes and HIV-1 Group O were quantified within +/-0.3 log(10) of the assigned titers. Specificity was 100% in 660 tested specimens, no cross reactivity was found for 15 pathogens nor any interference for endogenous substances or 29 drugs. Good comparability with the predecessor assay was demonstrated in 82 positive patient samples. In selected clinical samples 35/66 specimens were found underquantitated in the predecessor assay; all were quantitated correctly in the new assay. CONCLUSIONS: The dual-target approach for the HIV-1 TaqMan test v2.0 enables superior HIV-1 Group M subtype coverage including HIV-1 Group O detection. Correct quantitation of specimens underquantitated in the HIV-1 TaqMan test v1.0 test was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic mRNA transcription and turnover is controlled by an enzymatic machinery that includes RNA polymerase II and the 3' to 5' exosome. The activity of these protein complexes is modulated by additional factors, such as the nuclear RNA polymerase II-associated factor 1 (Paf1c) and the cytoplasmic Superkiller (SKI) complex, respectively. Their components are conserved across uni- as well as multi-cellular organisms, including yeast, Arabidopsis, and humans. Among them, SKI8 displays multiple facets on top of its cytoplasmic role in the SKI complex. For instance, nuclear yeast ScSKI8 has an additional function in meiotic recombination, whereas nuclear human hSKI8 (unlike ScSKI8) associates with Paf1c. The Arabidopsis SKI8 homolog VERNALIZATION INDEPENDENT 3 (VIP3) has been found in Paf1c as well; however, whether it also has a role in the SKI complex remains obscure so far. We found that transgenic VIP3-GFP, which complements a novel vip3 mutant allele, localizes to both nucleus and cytoplasm. Consistently, biochemical analyses suggest that VIP3-GFP associates with the SKI complex. A role of VIP3 in the turnover of nuclear encoded mRNAs is supported by random-primed RNA sequencing of wild-type and vip3 seedlings, which indicates mRNA stabilization in vip3. Another SKI subunit homolog mutant, ski2, displays a dwarf phenotype similar to vip3. However, unlike vip3, it displays neither early flowering nor flower development phenotypes, suggesting that the latter reflect VIP3's role in Paf1c. Surprisingly then, transgenic ScSKI8 rescued all aspects of the vip3 phenotype, suggesting that the dual role of SKI8 depends on species-specific cellular context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein phosphorylation-dephosphorylation catalyzed by the opposing and dynamic action of protein kinases and phosphatases probably, is the most crucial chemical reaction taking place in living organisms. Protein phosphatases are classified according to their substrate specificity and sensitivity to inhibitory or activator agents, into two families of protein phosphatases: serine/threonine phosphatases and tyrosine phosphatases (PTPs). PTPs can be divided into 3 groups: tyrosine specific phosphatases, dual and low molecular weight phosphatases. The role of tyrosine phosphorylation in mitogenic signaling is well documented, and one would predict that vanadate, pervanadate and other oxidant agents (protein tyrosine phosphatase inhibitors) may act as a growth stimulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8-dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug-induced apoptosis independently from drug uptake, possibly by impairing VRAC-dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D-containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Confocal fluorescence correlation spectroscopy as a time-averaging fluctuation analysis combining maximum sensitivity with high statistical confidence has proved to be a very versatile and powerful tool for detection and temporal investigation of biomolecules at ultralow concentrations on surfaces, in solutions, and in living cells. To probe the interaction of different molecular species for a detailed understanding of biologically relevant mechanisms, crosscorrelation studies on dual or multiple fluorophore assays with spectrally distinct excitation and emission are particularly promising. Despite the considerable improvement of detection specificity provided by fluorescence crosscorrelation analysis, few applications have so far been reported, presumably because of the practical challenges of properly aligning and controlling the stability of the experimental setup. In this work, we demonstrate that two-photon excitation combined with dual-color fluorescence correlation spectroscopy can be the key to simplifying simultaneous investigations of multiple fluorescent species significantly on a single-molecule scale. Two-photon excitation allows accession of common fluorophores of largely distinct emission by the same excitation wavelength, because differences in selection rules and vibronic coupling can induce considerable shifts between the one-photon and two-photon excitation spectra. The concept of dual-color two-photon fluorescence crosscorrelation analysis is introduced and experimentally demonstrated with an established assay probing the selective cleavage of dual-labeled DNA substrates by restriction endonuclease EcoRI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomologous DNA. Moreover, this specificity of DNA binding does not depend on the sequence of the DNA bound to the RecA protein primary site. We conclude that the specificity reflects an intrinsic property of the secondary site of RecA protein rather than an interaction between DNa molecules within nucleoprotein filament--i.e., self-recognition. The secondary DNA binding site displays a higher affinity for ssDNA than for double-stranded DNA, and the binding of ssDNA to the secondary site strongly inhibits DNA strand exchange. We suggest that the secondary binding site has a dual role in DNA strand exchange. During the homology search, it binds double-stranded DNA weakly; upon finding local homology, this site binds, with higher affinity, the ssDNA strand that is displaced during DNA strand exchange. These characteristics facilitate homologous pairing, promote stabilization of the newly formed heteroduplex DNA, and contribute to the directionality of DNA strand exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to analyze the effects of dual tasking on obstacle crossing during walking by individuals with Alzheimer's disease (AD) and by healthy older people. Thirty four elderly individuals (16 healthy subjects and 18 individuals with AD) were recruited to participate in this study. Three AD individuals and one control participant were excluded due to exclusion criteria. The participants were instructed to walk barefoot at their own speed along an 8 m long pathway. Each participant performed five trials for each condition (unobstructed walking, unobstructed walking with dual tasking, and obstacle crossing during walking with dual tasking). The trials were completely randomized for each participant. The mid-pathway stride was measured in the unobstructed walking trials and the stride that occurred during the obstacle avoidance was measured in the trials that involved obstacle crossing. The behavior of the healthy elderly subjects and individuals with AD was similar for obstacle crossing during walking with dual tasking. Both groups used the posture first strategy to prioritize stability and showed decreased attention to executive tasking while walking. Additionally, AD had a strong influence on the modifications that are made by the elderly while walking under different walking conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare intraocular pressure (IOP) rise in normal individuals and primary open-angle glaucoma patients and the safety and efficacy of ibopamine eye drops in different concentrations as a provocative test for glaucoma. METHODS: Glaucoma patients underwent (same eye) the ibopamine provocative test with two concentrations, 1% and 2%, in a random sequence at least 3 weeks apart, but not more than 3 months. The normal individuals were randomly submitted to one of the concentrations of ibopamine (1% and 2%). The test was considered positive if there was an IOP rise greater than 3 or 4 mmHg at 30 or 45 minutes to test which subset of the test has the best sensitivity (Se)/specificity (Sp). RESULTS: There was no statistically significant difference in any of the IOP measurements, comparing 1% with 2% ibopamine. The IOP was significantly higher at 30 and 45 minutes with both concentrations (p<0.001). The best sensitivity/specificity ratio was achieved with the cutoff point set as greater than 3 mmHg at 45 minutes with 2% ibopamine (area under the ROC curve: 0.864, Se: 84.6%; Sp:73.3%). All patients described a slight burning after ibopamine's instillation. CONCLUSION: 2% ibopamine is recommended as a provocative test for glaucoma. Because both concentrations have similar ability to rise IOP, 1% ibopamine may be used to treat ocular hypotony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the electronic transport properties of a dual-gated bilayer graphene nanodevice via first-principles calculations. We investigate the electric current as a function of gate length and temperature. Under the action of an external electrical field we show that even for gate lengths up 100 angstrom, a nonzero current is exhibited. The results can be explained by the presence of a tunneling regime due the remanescent states in the gap. We also discuss the conditions to reach the charge neutrality point in a system free of defects and extrinsic carrier doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases (PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and concentration-dependent fashion, most likely through covalent modification of the active site sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class of mechanism-based probes to modulate the PTP-mediated cellular processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.