934 resultados para distributed denial-of-service attacks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of service provisioning in largescale networks is highly dependent on the number and location of service facilities deployed at various hosts. The classical, centralized approach to determining the latter would amount to formulating and solving the uncapacitated k-median (UKM) problem (if the requested number of facilities is fixed), or the uncapacitated facility location (UFL) problem (if the number of facilities is also to be optimized). Clearly, such centralized approaches require knowledge of global topological and demand information, and thus do not scale and are not practical for large networks. The key question posed and answered in this paper is the following: "How can we determine in a distributed and scalable manner the number and location of service facilities?" We propose an innovative approach in which topology and demand information is limited to neighborhoods, or balls of small radius around selected facilities, whereas demand information is captured implicitly for the remaining (remote) clients outside these neighborhoods, by mapping them to clients on the edge of the neighborhood; the ball radius regulates the trade-off between scalability and performance. We develop a scalable, distributed approach that answers our key question through an iterative reoptimization of the location and the number of facilities within such balls. We show that even for small values of the radius (1 or 2), our distributed approach achieves performance under various synthetic and real Internet topologies that is comparable to that of optimal, centralized approaches requiring full topology and demand information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Denial of Service attacks is one of the most challenging areas to deal with in Security. Not only do security managers have to deal with flood and vulnerability attacks. They also have to consider whether they are from legitimate or malicious attackers. In our previous work we developed a framework called bodyguard, which is to help security software developers from the current serialized paradigm, to a multi-core paradigm. In this paper, we update our research work by moving our bodyguard paradigm, into our new Ubiquitous Multi-Core Framework. From this shift, we show a marked improvement from our previous result of 20% to 110% speedup performance with an average cost of 1.5 ms. We also conducted a second series of experiments, which we trained up Neural Network, and tested it against actual DDoS attack traffic. From these experiments, we were able to achieve an average of 93.36%, of this attack traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both Flash crowds and DDoS (Distributed Denial-of-Service) attacks have very similar properties in terms of internet traffic, however Flash crowds are legitimate flows and DDoS attacks are illegitimate flows, and DDoS attacks have been a serious threat to internet security and stability. In this paper we propose a set of novel methods using probability metrics to distinguish DDoS attacks from Flash crowds effectively, and our simulations show that the proposed methods work well. In particular, these mathods can not only distinguish DDoS attacks from Flash crowds clearly, but also can distinguish the anomaly flow being DDoS attacks flow or being Flash crowd flow from Normal network flow effectively. Furthermore, we show our proposed hybrid probability metrics can greatly reduce both false positive and false negative rates in detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes two new transport layer (TCP) options and an expanded transport layer queuing strategy that facilitate three functions that are fundamental to the dispatching-based clustered service. A transport layer option has been developed to facilitate. the use of client wait time data within the service request processing of the cluster. A second transport layer option has been developed to facilitate the redirection of service requests by the cluster dispatcher to the cluster processing member. An expanded transport layer service request queuing strategy facilitates the trust based filtering of incoming service requests so that a graceful degradation of service delivery may be achieved during periods of overload - most dramatically evidenced by distributed denial of service attacks against the clustered service. We describe how these new options and queues have been implemented and successfully tested within the transport layer of the Linux kernel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer networks are a critical factor for the performance of a modern company. Managing networks is as important as managing any other aspect of the company’s performance and security. There are many tools and appliances for monitoring the traffic and analyzing the network flow security. They use different approaches and rely on a variety of characteristics of the network flows. Network researchers are still working on a common approach for security baselining that might enable early watch alerts. This research focuses on the network security models, particularly the Denial-of-Services (DoS) attacks mitigation, based on a network flow analysis using the flows measurements and the theory of Markov models. The content of the paper comprises the essentials of the author’s doctoral thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A run through various aspects of Distributed Denial of Service attacks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Botnets, which consist of thousands of compromised machines, can cause a significant threat to other systems by launching Distributed Denial of Service attacks, keylogging, and backdoors. In response to this threat, new effective techniques are needed to detect the presence of botnets. In this paper, we have used an interception technique to monitor Windows Application Programming Interface system calls made by communication applications. Existing approaches for botnet detection are based on finding bot traffic patterns. Our approach does not depend on finding patterns but rather monitors the change of behaviour in the system. In addition, we will present our idea of detecting botnet based on log correlations from different hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last a few years a number of highly publicized incidents of Distributed Denial of Service (DDoS) attacks against high-profile government and commercial websites have made people aware of the importance of providing data and services security to users. A DDoS attack is an availability attack, which is characterized by an explicit attempt from an attacker to prevent legitimate users of a service from using the desired resources. This paper introduces the vulnerability of web applications to DDoS attacks, and presents an active distributed defense system that has a deployment mixture of sub-systems to protect web applications from DDoS attacks. According to the simulation experiments, this system is effective in that it is able to defend web applications against attacks. It can avoid overall network congestion and provide more resources to legitimate web users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently a number of highly publicised incidents of Distributed Denial of Service (DDoS) attacks have made people aware of the importance of providing available securely the grids’ data and services to users. This paper introduces the vulnerability of grids to DDoS attacks, and proposes a distributed defense system that has a mixture deployment of sub-systems to protect grids from DDoS attacks. According to the simulation experiments, this system is effective to defend grids against attacks. It can avoid overall network congestion and provide more resources to legitimate grid users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays Distributed Denial of Service (DDoS) attacks have made one of the most serious threats to the information infrastructure. In this paper we firstly present a new filtering approach, Mark-Aided Distributed Filtering (MADF), which is to find the network anomalies by using a back-propagation neural network, deploy the defense system at distributed routers, identify and filtering the attack packets before they can reach the victim; and secondly propose an analytical model for the interactions between DDoS attack party and defense party, which allows us to have a deep insight of the interactions between the attack and defense parties. According to the experimental results, we find that MADF can detect and filter DDoS attack packets with high sensitivity and accuracy, thus provide high legitimate traffic throughput and low attack traffic throughput. Through the comparison between experiments and numerical results, we also demonstrate the validity of the analytical model that can precisely estimate the effectiveness of a DDoS defense system before it encounters different attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new approach, called Flexible Deterministic Packet Marking (FDPM), to perform a large-scale IP traceback to defend against Distributed Denial of Service (DDoS) attacks. In a DDoS attack the victim host or network is usually attacked by a large number of spoofed IP packets coming from multiple sources. IP traceback is the ability to trace the IP packets to their sources without relying on the source address field of the IP header. FDPM provides many flexible features to trace the IP packets and can obtain better tracing capability than current IP traceback mechanisms, such as Probabilistic Packet Marking (PPM), and Deterministic Packet Marking (DPM). The flexibilities of FDPM are in two ways, one is that it can adjust the length of marking field according to the network protocols deployed; the other is that it can adjust the marking rate according to the load of participating routers. The implementation and evaluation demonstrates that the FDPM needs moderately only a small number of packets to complete the traceback process; and can successfully perform a large-scale IP traceback, for example, trace up to 110,000 sources in a single incident response. It has a built-in overload prevention mechanism, therefore this scheme can perform a good traceback process even it is heavily loaded.