934 resultados para distributed denial-of-service attack


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Denial-of-Service attack (DDoS) is a major threat for cloud environment. Traditional defending approaches cannot be easily applied in cloud security due to their relatively low efficiency, large storage, to name a few. In view of this challenge, a Confidence-Based Filtering method, named CBF, is investigated for cloud computing environment, in this paper. Concretely speaking, the method is deployed by two periods, i.e., non-attack period and attack period. More specially, legitimate packets are collected at non-attack period, for extracting attribute pairs to generate a nominal profile. With the nominal profile, the CBF method is promoted by calculating the score of a particular packet at attack period, to determine whether to discard it or not. At last, extensive simulations are conducted to evaluate the feasibility of the CBF method. The result shows that CBF has a high scoring speed, a small storage requirement and an acceptable filtering accuracy, making it suitable for real-time filtering in cloud environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Denial of Service attacks is one of the most challenging areas to deal with in Security. Not only do security managers have to deal with flood and vulnerability attacks. They also have to consider whether they are from legitimate or malicious attackers. In our previous work we developed a framework called bodyguard, which is to help security software developers from the current serialized paradigm, to a multi-core paradigm. In this paper, we update our research work by moving our bodyguard paradigm, into our new Ubiquitous Multi-Core Framework. From this shift, we show a marked improvement from our previous result of 20% to 110% speedup performance with an average cost of 1.5 ms. We also conducted a second series of experiments, which we trained up Neural Network, and tested it against actual DDoS attack traffic. From these experiments, we were able to achieve an average of 93.36%, of this attack traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel server-side defense scheme is proposed to resist the Web proxy-based distributed denial of service attack. The approach utilizes the temporal and spatial locality to extract the behavior features of the proxy-to-server traffic, which makes the scheme independent of the traffic intensity and frequently varying Web contents. A nonlinear mapping function is introduced to protect weak signals from the interference of infrequent large values. Then, a new hidden semi-Markov model parameterized by Gaussian-mixture and Gamma distributions is proposed to describe the time-varying traffic behavior of Web proxies. The new method reduces the number of parameters to be estimated, and can characterize the dynamic evolution of the proxy-to-server traffic rather than the static statistics. Two diagnosis approaches at different scales are introduced to meet the requirement of both fine-grained and coarse-grained detection. Soft control is a novel attack response method proposed in this work. It converts a suspicious traffic into a relatively normal one by behavior reshaping rather than rudely discarding. This measure can protect the quality of services of legitimate users. The experiments confirm the effectiveness of the proposed scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last a few years a number of highly publicized incidents of Distributed Denial of Service (DDoS) attacks against high-profile government and commercial websites have made people aware of the importance of providing data and services security to users. A DDoS attack is an availability attack, which is characterized by an explicit attempt from an attacker to prevent legitimate users of a service from using the desired resources. This paper introduces the vulnerability of web applications to DDoS attacks, and presents an active distributed defense system that has a deployment mixture of sub-systems to protect web applications from DDoS attacks. According to the simulation experiments, this system is effective in that it is able to defend web applications against attacks. It can avoid overall network congestion and provide more resources to legitimate web users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently Distributed Denial of Service (DDoS) attacks have been identified as one of the most serious problems on the Internet. The aim of DDoS attacks is to prevent legitimate users from accessing desired resources, such as network bandwidth. Hence the immediate task of DDoS defense is to provide as much resources as possible to legitimate users when there is an attack. Unfortunately most current defense approaches can not efficiently detect and filter out attack traffic. Our approach is to find the network anomalies by using neural network, deploy the system at distributed routers, identify the attack packets, and then filter them. The marks in the IP header that are generated by a group of IP traceback schemes, Deterministic Packet Marking (DPM)/Flexible Deterministic Packet Marking (FDPM), assist this process of identifying attack packets. The experimental results show that this approach can be used to defend against both intensive and subtle DDoS attacks, and can catch DDoS attacks’ characteristic of starting from multiple sources to a single victim. According to results, we find the marks in IP headers can enhance the sensitivity and accuracy of detection, thus improve the legitimate traffic throughput and reduce attack traffic throughput. Therefore, it can perform well in filtering DDoS attack traffic precisely and effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Service oriented architecture (SOA) is a way of reorganizing software infrastructure into a set of service abstracts. In the area of applying SOA to Web service security, there have been some well defined security dimensions. However, current Web security systems, like WS-Security are not efficient enough to handle distributed denial of service (DDoS) attacks. Our new approach, service oriented traceback architecture (SOTA), provides a framework to be able to identify the source of an attack. This is accomplished by deploying our defence system at distributed routers, in order to examine the incoming SOAP messages and place our own SOAP header. By this method, we can then use the new SOAP header information, to traceback through the network the source of the attack. According to our experimental performance evaluations, we find that SOTA is quite scaleable, simple and quite effective at identifying the source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Denial-of-Service (DDoS) attacks are a critical threat to the Internet. However, the memoryless feature of the Internet routing mechanisms makes it extremely hard to trace back to the source of these attacks. As a result, there is no effective and efficient method to deal with this issue so far. In this paper, we propose a novel traceback method for DDoS attacks that is based on entropy variations between normal and DDoS attack traffic, which is fundamentally different from commonly used packet marking techniques. In comparison to the existing DDoS traceback methods, the proposed strategy possesses a number of advantagesit is memory nonintensive, efficiently scalable, robust against packet pollution, and independent of attack traffic patterns. The results of extensive experimental and simulation studies are presented to demonstrate the effectiveness and efficiency of the proposed method. Our experiments show that accurate traceback is possible within 20 seconds (approximately) in a large-scale attack network with thousands of zombies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a technique to defeat Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks in Ad Hoc Networks. The technique is divided into two main parts and with game theory and cryptographic puzzles. Introduced first is a new client puzzle to prevent DoS attacks in such networks. The second part presents a multiplayer game that takes place between the nodes of an ad hoc network and based on fundamental principles of game theory. By combining computational problems with puzzles, improvement occurs in the efficiency and latency of the communicating nodes and resistance in DoS and DDoS attacks. Experimental results show the effectiveness of the approach for devices with limited resources and for environments like ad hoc networks where nodes must exchange information quickly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays Distributed Denial of Service (DDoS) attacks have made one of the most serious threats to the information infrastructure. In this paper we firstly present a new filtering approach, Mark-Aided Distributed Filtering (MADF), which is to find the network anomalies by using a back-propagation neural network, deploy the defense system at distributed routers, identify and filtering the attack packets before they can reach the victim; and secondly propose an analytical model for the interactions between DDoS attack party and defense party, which allows us to have a deep insight of the interactions between the attack and defense parties. According to the experimental results, we find that MADF can detect and filter DDoS attack packets with high sensitivity and accuracy, thus provide high legitimate traffic throughput and low attack traffic throughput. Through the comparison between experiments and numerical results, we also demonstrate the validity of the analytical model that can precisely estimate the effectiveness of a DDoS defense system before it encounters different attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently high-speed networks have been attacked by successive waves of Distributed Denial of Service (DDoS) attacks. There are two major challenges on DDoS defense in the high-speed networks. One is to sensitively and accurately detect attack traffic, and the other is to filter out the attack traffic quickly, which mainly depends on high-speed packet classification. Unfortunately most current defense approaches can not efficiently detect and quickly filter out attack traffic. Our approach is to find the network anomalies by using neural network, deploy the system at distributed routers, identify the attack packets, and then filter them quickly by a Bloom filter-based classifier. The evaluation results show that this approach can be used to defend against both intensive and subtle DDoS attacks, and can catch DDoS attacks’ characteristic of starting from multiple sources to a single victim. The simple complexity, high classification speed and low storage requirements make it especially suitable for DDoS defense in high-speed networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently high-speed networks have been utilized by attackers as Distributed Denial of Service (DDoS) attack infrastructure. Services on high-speed networks also have been attacked by successive waves of the DDoS attacks. How to sensitively and accurately detect the attack traffic, and quickly filter out the attack packets are still the major challenges in DDoS defense. Unfortunately most current defense approaches can not efficiently fulfill these tasks. Our approach is to find the network anomalies by using neural network and classify DDoS packets by a Bloom filter-based classifier (BFC). BFC is a set of spaceefficient data structures and algorithms for packet classification. The evaluation results show that the simple complexity, high classification speed and accuracy and low storage requirements of this classifier make it not only suitable for DDoS filtering in high-speed networks, but also suitable for other applications such as string matching for intrusion detection systems and IP lookup for programmable routers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new approach, called Flexible Deterministic Packet Marking (FDPM), to perform a large-scale IP traceback to defend against Distributed Denial of Service (DDoS) attacks. In a DDoS attack the victim host or network is usually attacked by a large number of spoofed IP packets coming from multiple sources. IP traceback is the ability to trace the IP packets to their sources without relying on the source address field of the IP header. FDPM provides many flexible features to trace the IP packets and can obtain better tracing capability than current IP traceback mechanisms, such as Probabilistic Packet Marking (PPM), and Deterministic Packet Marking (DPM). The flexibilities of FDPM are in two ways, one is that it can adjust the length of marking field according to the network protocols deployed; the other is that it can adjust the marking rate according to the load of participating routers. The implementation and evaluation demonstrates that the FDPM needs moderately only a small number of packets to complete the traceback process; and can successfully perform a large-scale IP traceback, for example, trace up to 110,000 sources in a single incident response. It has a built-in overload prevention mechanism, therefore this scheme can perform a good traceback process even it is heavily loaded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last couple of months a large number of distributed denial of service (DDoS) attacks have occurred across the world, especially targeting those who provide Web services. IP traceback, a counter measure against DDoS, is the ability to trace IP packets back to the true source/s of the attack. In this paper, an IP traceback scheme using a machine learning technique called intelligent decision prototype (IDP), is proposed. IDP can be used on both probabilistic packet marking (PPM) and deterministic packet marking (DPM) traceback schemes to identify DDoS attacks. This will greatly reduce the packets that are marked and in effect make the system more efficient and effective at tracing the source of an attack compared with other methods. IDP can be applied to many security systems such as data mining, forensic analysis, intrusion detection systems (IDS) and DDoS defense systems.