913 resultados para distributed computing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This book develops tools and techniques that will help urban residents gain access to urban computing. Metaphorically speaking, it is taking computing to the street by giving the general public – rather than just researchers and professionals – the power to leverage available city infrastructure and create solutions tailored to their individual needs. It brings together five chapters that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction Conference (OZCHI 2009). This book focuses on applying urban informatics, urban and community sensing and open application programming interfaces (APIs) to the public space through the delivery of online services, on demand and in real time. It then offers a case study of how the city of Singapore has harnessed the potential of an online infrastructure so that residents and visitors can access services electronically. This book was published as a special issue of the Journal of Urban Technology, 19(2), 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer- Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges, and foundations of this research trajectory. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarizes related work in this field of interest. We conclude by introducing the papers that have been contributed to this special issue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generalization of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics. Also, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement. The comparison results show that the computation using our mapper/reducer placement is much cheaper while still satisfying the computation deadline.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NPcomplete. Thus, in this paper we propose a new grouping genetic algorithm for the mappers/reducers placement problem in cloud computing. Compared with the original one, our grouping genetic algorithm uses an innovative coding scheme and also eliminates the inversion operator which is an essential operator in the original grouping genetic algorithm. The new grouping genetic algorithm is evaluated by experiments and the experimental results show that it is much more efficient than four popular algorithms for the problem, including the original grouping genetic algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability of cloud computing to provide almost unlimited storage, backup and recovery, and quick deployment contributes to its widespread attention and implementation. Cloud computing has also become an attractive choice for mobile users as well. Due to limited features of mobile devices such as power scarcity and inability to cater computationintensive tasks, selected computation needs to be outsourced to the resourceful cloud servers. However, there are many challenges which need to be addressed in computation offloading for mobile cloud computing such as communication cost, connectivity maintenance and incurred latency. This paper presents taxonomy of the computation offloading approaches which aim to address the challenges. The taxonomy provides guidelines to identify research scopes in computation offloading for mobile cloud computing. We also outline directions and anticipated trends for future research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper uses transaction cost theory to study cloud computing adoption. A model is developed and tested with data from an Australian survey. According to the results, perceived vendor opportunism and perceived legislative uncertainty around cloud computing were significantly associated with perceived cloud computing security risk. There was also a significant negative relationship between perceived cloud computing security risk and the intention to adopt cloud services. This study also reports on adoption rates of cloud computing in terms of applications, as well as the types of services used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vision sense of standalone robots is limited by line of sight and onboard camera capabilities, but processing video from remote cameras puts a high computational burden on robots. This paper describes the Distributed Robotic Vision Service, DRVS, which implements an on-demand distributed visual object detection service. Robots specify visual information requirements in terms of regions of interest and object detection algorithms. DRVS dynamically distributes the object detection computation to remote vision systems with processing capabilities, and the robots receive high-level object detection information. DRVS relieves robots of managing sensor discovery and reduces data transmission compared to image sharing models of distributed vision. Navigating a sensorless robot from remote vision systems is demonstrated in simulation as a proof of concept.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Robotic vision is limited by line of sight and onboard camera capabilities. Robots can acquire video or images from remote cameras, but processing additional data has a computational burden. This paper applies the Distributed Robotic Vision Service, DRVS, to robot path planning using data outside line-of-sight of the robot. DRVS implements a distributed visual object detection service to distributes the computation to remote camera nodes with processing capabilities. Robots request task-specific object detection from DRVS by specifying a geographic region of interest and object type. The remote camera nodes perform the visual processing and send the high-level object information to the robot. Additionally, DRVS relieves robots of sensor discovery by dynamically distributing object detection requests to remote camera nodes. Tested over two different indoor path planning tasks DRVS showed dramatic reduction in mobile robot compute load and wireless network utilization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solving large-scale all-to-all comparison problems using distributed computing is increasingly significant for various applications. Previous efforts to implement distributed all-to-all comparison frameworks have treated the two phases of data distribution and comparison task scheduling separately. This leads to high storage demands as well as poor data locality for the comparison tasks, thus creating a need to redistribute the data at runtime. Furthermore, most previous methods have been developed for homogeneous computing environments, so their overall performance is degraded even further when they are used in heterogeneous distributed systems. To tackle these challenges, this paper presents a data-aware task scheduling approach for solving all-to-all comparison problems in heterogeneous distributed systems. The approach formulates the requirements for data distribution and comparison task scheduling simultaneously as a constrained optimization problem. Then, metaheuristic data pre-scheduling and dynamic task scheduling strategies are developed along with an algorithmic implementation to solve the problem. The approach provides perfect data locality for all comparison tasks, avoiding rearrangement of data at runtime. It achieves load balancing among heterogeneous computing nodes, thus enhancing the overall computation time. It also reduces data storage requirements across the network. The effectiveness of the approach is demonstrated through experimental studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we describe an efficient coordinated-checkpointing and recovery algorithm which can work even when the channels are assumed to be non-FIFO, and messages may be lost. Nodes are assumed to be autonomous, and they do not block while taking checkpoints. Based on the local conditions, any process can request the previous coordinator for the 'permission' to initiate a new checkpoint. Allowing multiple initiators of checkpoints avoids the bottleneck associated with a single initiator, but the algorithm permits only a single instance of checkpointing process at any given time, thus reducing much of the overhead associated with multiple initiators of distributed algorithms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A distributed system is a collection of networked autonomous processing units which must work in a cooperative manner. Currently, large-scale distributed systems, such as various telecommunication and computer networks, are abundant and used in a multitude of tasks. The field of distributed computing studies what can be computed efficiently in such systems. Distributed systems are usually modelled as graphs where nodes represent the processors and edges denote communication links between processors. This thesis concentrates on the computational complexity of the distributed graph colouring problem. The objective of the graph colouring problem is to assign a colour to each node in such a way that no two nodes connected by an edge share the same colour. In particular, it is often desirable to use only a small number of colours. This task is a fundamental symmetry-breaking primitive in various distributed algorithms. A graph that has been coloured in this manner using at most k different colours is said to be k-coloured. This work examines the synchronous message-passing model of distributed computation: every node runs the same algorithm, and the system operates in discrete synchronous communication rounds. During each round, a node can communicate with its neighbours and perform local computation. In this model, the time complexity of a problem is the number of synchronous communication rounds required to solve the problem. It is known that 3-colouring any k-coloured directed cycle requires at least ½(log* k - 3) communication rounds and is possible in ½(log* k + 7) communication rounds for all k ≥ 3. This work shows that for any k ≥ 3, colouring a k-coloured directed cycle with at most three colours is possible in ½(log* k + 3) rounds. In contrast, it is also shown that for some values of k, colouring a directed cycle with at most three colours requires at least ½(log* k + 1) communication rounds. Furthermore, in the case of directed rooted trees, reducing a k-colouring into a 3-colouring requires at least log* k + 1 rounds for some k and possible in log* k + 3 rounds for all k ≥ 3. The new positive and negative results are derived using computational methods, as the existence of distributed colouring algorithms corresponds to the colourability of so-called neighbourhood graphs. The colourability of these graphs is analysed using Boolean satisfiability (SAT) solvers. Finally, this thesis shows that similar methods are applicable in capturing the existence of distributed algorithms for other graph problems, such as the maximal matching problem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An edge dominating set for a graph G is a set D of edges such that each edge of G is in D or adjacent to at least one edge in D. This work studies deterministic distributed approximation algorithms for finding minimum-size edge dominating sets. The focus is on anonymous port-numbered networks: there are no unique identifiers, but a node of degree d can refer to its neighbours by integers 1, 2, ..., d. The present work shows that in the port-numbering model, edge dominating sets can be approximated as follows: in d-regular graphs, to within 4 − 6/(d + 1) for an odd d and to within 4 − 2/d for an even d; and in graphs with maximum degree Δ, to within 4 − 2/(Δ − 1) for an odd Δ and to within 4 − 2/Δ for an even Δ. These approximation ratios are tight for all values of d and Δ: there are matching lower bounds.