999 resultados para dietary selenium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reconnaissance of 23 paddy fields, from three Bangladesh districts, encompassing a total of 230 soil and rice plant samples was conducted to identify the extent to which trace element characteristics in soils and irrigation waters are reflected by the harvested rice crop. Field sites were located on two soil physiographic units with distinctly different As soil baseline and groundwater concentrations. For arsenic (As), both straw and grain trends closely fitted patterns observed for the soils and water. Grain concentration characteristics for selenium (Se), zinc (Zn), and nickel (Ni), however, were markedly different. Regressions of shoot and grain As against grain Se, Zn, and Ni were highly significant (P <0.001), exhibiting a pronounced decline in grain trace-nutrient quality with increasing As content. To validate this further, a pot experiment cultivar screening trial, involving commonly cultivated high yielding variety (HYV) rice grown alongside two U.S. rice varieties characterized as being As tolerant and susceptible, was conducted on an As-amended uniform soil. Findings from the trial confirmed that As perturbed grain metal(loid) balances, resulting in severe yield reductions in addition to constraining the levels of Se, Zn, and Ni in the grain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For up to 1 billion people worldwide, insufficient dietary intake of selenium (Se) is a serious health constraint Cereals are the dominant Se source for those on low protein diets, as typified by the global malnourished population. With crop Se content constrained largely by underlying geology, regional soil Se variations are often mirrored by their locally grown staples. Despite this, the Se concentrations of much of the world's rice, the mainstay of so many, is poorly characterized, for both total Se content and Se speciation. In this study, 1092 samples of market sourced polished rice were obtained. The sampled rice encompassed dominant rice producing and exporting countries. Rice from the U.S. and India were found to be the most enriched, while mean average levels were lowest in Egyptian rice: similar to 32-fold less than their North American equivalents. By weighting country averages by contribution to either global production or export, modeled baseline values for both were produced. Based on a daily rice consumption of 300 g day(-1), around 75% of the grains from the production and export pools would fail to provide 70% of daily recommended Se intakes. Furthermore, Se localization and speciation characterization using X-ray fluorescence (mu-XRF) and X-ray absorption near edge structure (mu-XANES) techniques were investigated in a Se-rich sample. The results revealed that the large majority of Se in the endosperm was present in organic forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the largest market basket survey of arsenic (As) in U.S. rice to date. Our findings show differences in transitional-metal levels between polished and unpolished rice and geographical variation in As and selenium (Se) between rice processed in California and the South Central U.S. The mean and median As grain levels for the South Central U.S. were 0.30 and 0.27 µg As g-1, respectively, for 107 samples. Levels for California were 41% lower than the South Central U.S., with a mean of 0.17 µg As g-1 and a median of 0.16 µg As g-1 for 27 samples. The mean and median Se grain levels for the South Central U.S. were 0.19 µg Se g-1. Californian rice levels were lower, averaging only 0.08 and 0.06 µg Se g-1 for mean and median values, respectively. The difference between the two regions was found to be significant for As and Se (General Linear Model (GLM):? As p < 0.001; Se p < 0.001). No statistically significant differences were observed in As or Se levels between polished and unpolished rice (GLM:? As p = 0.213; Se p = 0.113). No significant differences in grain levels of manganese (Mn), cobalt (Co), copper (Cu), or zinc (Zn) were observed between California and the South Central U.S. Modeling arsenic intake for the U.S. population based on this survey shows that for certain groups (namely Hispanics, Asians, sufferers of Celiac disease, and infants) dietary exposure to inorganic As from elevated levels in rice potentially exceeds the maximum intake of As from drinking water (based on consumption of 1 L of 0.01 mg L-1 In. As) and Californian state exposure limits. Further studies on the transformation of As in soil, grain As bioavailability in the human gastrointestinal tract, and grain elemental speciation trends are critical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selenium, an essential micronutrient for humans, is insufficient in dietary intake for millions of people worldwide. Rice as the most popular staple food in the world is one of the dominant selenium (Se) sources for people. The distribution and translocation of Se from soil to grain were investigated in a Se-rich environment in this study. The Se levels in soils ranged widely from 0.5 to 47.7 mg kg(-1). Selenium concentration in rice bran was 1.94 times higher than that in corresponding polished rice. The total Se concentrations in the rice fractions were in the following order: straw > bran > whole grain > polished rice > husk. Significant linear relationships between different rice fractions were observed with each other, and Se in the soil has a linear relationship with different rice fractions as well. Se concentration in rice can easily be predicted by soil Se concentrations or any rice fractions and vice versa according to their linear relationships. In all rice samples for Se speciation, SeMet was the major Se species, followed by MeSeCys and SeCys. The average percentage for SeMet (82.9%) and MeSeCys (6.2%) was similar in the range of total Se from 2.2 to 8.4 mg kg(-1) tested. The percentage of SeCys decreased from 6.3 to 2.8%, although its concentration elevated with the increase in total Se in rice. This could be due to the fact that SeCys is the precursor for the formation of other organic Se compounds. The information obtained may have considerable significance for assessing translocation and accumulation of Se in plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Observational studies suggest that patients with heart failure have a tendency to a reduced status of a number of micronutrients and that this may be associated with an adverse prognosis. A small number of studies also suggest that patients with heart failure may have reduced dietary intake of micronutrients, a possible mechanism for reduced status.

OBJECTIVE: The aims of this study were to assess dietary micronutrient intake and micronutrient status in a group of patients with heart failure.

METHODS: Dietary intake was assessed in 79 outpatients with chronic stable heart failure with a reduced ejection fraction using a validated food frequency questionnaire. Blood concentrations of a number of micronutrients, including vitamin D, were measured in fasting blood samples, drawn at the time of food frequency questionnaire completion.

RESULTS: More than 20% of patients reported intakes less than the reference nutrient intake or recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, and iodine. More than 5% of patients reported intakes less than the lower reference nutrient intake or minimum recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, selenium, and iodine. Vitamin D deficiency (plasma total 25-hydroxy-vitamin D concentration <50 nmol/L) was observed in 75.6% of patients.

CONCLUSIONS: Vitamin D deficiency was common in this group of patients with heart failure. Based on self-reported dietary intake, a substantial number of individuals may not have been consuming enough vitamin D and a modest number of individuals may not have been consuming enough riboflavin, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, or iodine to meet their dietary needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to determine the distribution of total selenium (Se) and of the proportion of total Se comprised as the selenized amino acids selenomethionine (SeMet) and selenocysteine (SeCys) within the post mortem tissues of lambs that were fed high dose selenized enriched yeast (SY), derived from a specific strain of Saccharomyces cerevisae CNCM (Collection Nationale de Culture de Micro-organism) I-3060. Thirty two Texel X Suffolk lambs (6.87 ± 0.23 kg BW) were offered both reconstituted milk replacer and a pelleted diet, both of which had been either supplemented with high SY (6.30 ± 0.18 mg Se/kg DM) or unsupplemented (0.13 ± 0.01 mg Se/kg of DM), depending on treatment designation, for a continuous period of 91 d. At enrollment and 28, 56 and 91 d following enrollment lambs were blood sampled. At the completion of the treatment period, five lambs from each treatment group were euthanased and samples of heart, liver, kidney and skeletal muscle (Longissimus Dorsi and Psoas Major) were retained for Se analysis. The inclusion of high SY increased (P < 0.001) whole blood Se concentration, reaching a maximum mean value of 815.2 ± 19.1 ng Se/mL compared with 217.8 ± 9.1 ng Se/mL in control animals. Tissue total Se concentrations were significantly (P < 0.001) higher in SY supplemented animals than in controls irrespective of tissue type; values were 26, 16, 8 and 3 times higher in skeletal muscle, liver, heart and kidney tissue of HSY lambs when compared to controls. however, the distribution of total Se and the proportions of total Se comprised as either SeMet or SeCys differed between tissue types. Selenocysteine was the predominant selenized amino acid in glandular tissues, such the liver and kidney. irrespective of treatment, although absolute values were markedly higher in HSY lambs. Conversely selenomethionine was the predominat selenized amino acid in cardiac and skeletal muscle (Longissimus Dorsi, and Psoas Major) tissues in HSY animals, although the same trend was not apparent for control lambs in which SeCys was the predominant selenized amino acid. It was concluded that there were increases in both whole blood and tissue total Se concentrations as a result of dietary supplementation with high dose of SY. Furthermore, distribution of total Se and Se species differed between both treatment designation and tissue type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study was to determine if there were adverse effects on animal health and performance when a range of ruminant animals species were fed at least 10 times the maximum permitted European Union (EU) selenium (Se) dietary inclusion rate (0.568 mg Se/kg DM) in the form of selenium enriched yeast (SY) derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060. In a series of studies, dairy cows, beef cattle, calves and lambs were offered either a control diet which contained no Se supplement or a treatment diet which contained the same basal feed ingredients plus a SY supplement which increased total dietary Se from 0.15 to 6.25, 0.20 to 6.74, 0.15 to 5.86 and 0.14 to 6.63 mg Se/kg DM, respectively. The inclusion of the SY supplement (P < 0.001) increased whole blood Se concentrations, reaching maximum mean values of 716, 1,505, 1,377, and 724 ng Se/mL for dairy cattle, beef cattle, calves and lambs, respectively. Selenomethionine accounted for 10% of total whole blood Se in control animals whereas the proportion in SY animals ranged between 40 and 75%. Glutathione peroxidase (EC 1.11.1.9) activity was higher (P < 0.05) in SY animals when compared with controls. A range of other biochemical and hematological parameters were assessed, but few differences of biological significance were established between treatments groups. There were no differences between treatment groups within each species with regard to animal physical performance or overall animal health. It was concluded that there were no adverse effects on animal health, performance and voluntary feed intake to the administration of at least ten times the EU maximum, or approximately twenty times the US FDA permitted concentration of dietary Se in the form of SY derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forty-multiparous Holstein cows were used in a 16-wk continuous design study to determine the effects of either selenium (Se) source, selenized yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060 Sel-Plex®) or sodium selenite (SS), or inclusion rate of SY on Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a TMR with 1:1 forage:concentrate ratio on a dry matter (DM) basis. There were four diets (T1-T4) which differed only in either source or dose of Se additive. Estimated total dietary Se for T1 (no supplement), T2 (SS), T3 (SY) and T4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28 day intervals and at each time point there were positive linear effects of SY on Se concentration in blood and milk. At day 112 blood and milk Se values for T1-T4 were 177, 208, 248, 279 ± 6.6 and 24, 38, 57, 72 ± 3.7 ng/g fresh material, respectively and indicate improved uptake and incorporation of Se from SY. While selenocysteine (SeCys) was the main selenised amino acid in blood its concentration was not markedly affected by treatment, but the proportion of total Se as selenomethionine (SeMet) increased with increasing inclusion rate of SY. In milk, there were no marked treatment effects on SeCys content, but Se source had a marked effect on the proportion of total Se as SeMet. At day 112 replacing SS (T2) with SY (T3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157 ng Se/g as the inclusion rate of SY increased further (T4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate effected the keeping quality of milk. At day 112, milk from T1, T2, and T3 was made into a hard cheese and Se source had a marked effect on total Se and the proportion of total Se comprised as either SeMet or SeCys. Replacing SS (T2) with SY (T3) increased total Se, SeMet and SeCys content from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g, respectively. Key words: dairy cow, milk and cheese, selenomethionine, selenocysteine, milk keeping quality

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forty multiparous Holstein cows were used in a 16-week continuous design study to determine the effects of either selenium (Se) source, selenised yeast (SY) (derived from a specific strain of Saccharomyces cerevisiae CNCM 1-3060) or sodium selenite (SS), or Se inclusion rate in the form of SY in the diets of lactating dairy cows on the Se concentration and speciation in blood, milk and cheese. Cows received ad libitum a total mixed ration (TMR) with a 1 : 1 forage: concentrate ratio on a dry matter (DM) basis. There were four diets (T-1 to T-4), which differed only in either source or dose of Se additive. Estimated total dietary Se for T, (no supplement), T-2 (SS), T-3 (SY) and T-4 (SY) was 0.16, 0.30, 0.30 and 0.45 mg/kg DM, respectively. Blood and milk samples were taken at 28-day intervals and at each time point there were positive linear effects of Se in the form of SY on the Se concentration in blood and milk. At day 112 blood and milk Se values for T-1 to T-4 were 177, 208, 248 and 279 +/- 6.6 and 24, 38, 57 and 72 +/- 3.7 ng/g fresh material, respectively, and indicate improved uptake and incorporation of Se from SY. In whole blood, selenocysteine (SeCys) was the main selenised amino acid and the concentration of selenomethionine (SeMet) increased with the increasing inclusion rate of SY In milk, there were no marked treatment effects on the SeCys content, but Se source had a marked effect on the concentration of SeMet. At day 112 replacing SS (T-2) with SY (T-3) increased the SeMet concentration of milk from 36 to 111 ng Se/g and its concentration increased further to 157ng Se/g dried sample as the inclusion rate of SY increased further (T-4) to provide 0.45 mg Se/kg TMR. Neither Se source nor inclusion rate affected the keeping quality of milk. At day 112 milk from T-1, T-2 and T-3 was made into a hard cheese and Se source had a marked effect on total Se and the concentration of total Se comprised as either SeMet or SeCys. Replacing SS (T-2) with SY (T-3) increased total Se, SeMet and SeCys content in cheese from 180 to 340 ng Se/g, 57 to 153 ng Se/g and 52 to 92 ng Se/g dried sample, respectively. The use of SY to produce food products with enhanced Se content as a means of meeting the Se requirements is discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk to develop Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor- coactivator 1 were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of dietary factors in the development of skin cancer has been investigated for many years; however, the results of epidemiologic studies have not been systematically reviewed. This article reviews human studies of basal cell cancer (BCC) and squamous cell cancer (SCC) and includes all studies identified in the published scientific literature investigating dietary exposure to fats, retinol, carotenoids, vitamin E, vitamin C, and selenium. A total of 26 studies were critically reviewed according to study design and quality of the epidemiologic evidence. Overall, the evidence suggests a positive relationship between fat intake and BCC and SCC, an inconsistent association for retinol, and little relation between ß-carotene and BCC or SCC development. There is insufficient evidence on which to make a judgment about an association of other carotenoids with skin cancer. The evidence for associations between vitamin E, vitamin C, and selenium and both BCC and SCC is weak. Many of the existing studies contain limitations, however, and further well-designed and implemented studies are required to clarify the role of diet in skin cancer. Additionally, the role of other dietary factors, such as flavonoids and other polyphenols, which have been implicated in skin cancer development in animal models, needs to be investigated.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to review the published literature values for the selenium content of Australian foods. A secondary aim was to compare the results for Australian foods with food composition data from international sources to investigate the extent of geographical variation. Published food composition data sources for the selenium content in Australian foods were identified and assessed for data quality using established criteria. The selenium content is available for 148 individual food items. The highest values found are for fish (12.0–63.2 μg/100 g), meats (4.75–37.9 μg/100 g) and eggs (9.00–41.4 μg/100 g), followed by cereals (1.00–20.3 μg/100 g). Moderate levels are seen in dairy products (2.00–7.89 μg/100 g) while most fruits and vegetables have low levels (trace—3.27 μg/100 g). High selenium foods show the greatest level of geographical variation, with foods from the United States generally having higher selenium levels than Australian foods and foods from the United Kingdom and New Zealand having lower levels. This is the first attempt to review the available literature for selenium composition of Australian foods. These data serve as an interim measure for the assessment of selenium intake for use in epidemiological studies of diet–disease relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer and many chronic inflammatory diseases are associated with increased amounts of reactive oxygen species (ROS). The potential cellular and tissue damage created by ROS has significant impact on many disease and cancer states and natural therapeutics are becoming essential in regulating altered redox states. We have shown recently that iron content is a critical determinant in the antitumour activity of bovine milk lactoferrin (bLF). We found that 100% iron-saturated bLF (Fe-bLF) acts as a potent natural adjuvant and fortifying agent for augmenting cancer chemotherapy and thus has a broad utility in the treatment of cancer. Furthermore, we also studied the effects of iron saturated bLF's ability as an antioxidant in the human epithelial colon cancer cell line HT29, giving insights into the potential of bLF in its different states. Thus, metal saturated bLF could be implemented as anti-cancer neutraceutical. In this regard, we have recently been able to prepare a selenium (Se) saturated form of bLF, being up to 98% saturated. Therefore, the objectives of this study were to determine how oxidative stress induced by hydrogen peroxide (H2O2) alters antioxidant enzyme activity within HT29 epithelial colon cancer cells, and observe changes in this activity by treatments with different antioxidants ascorbic acid (AA), Apo (iron free)-bLF and selenium (Se)-bLF. The states of all antioxidant enzymes (glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GsT), catalase and superoxide dismutase (SOD)) demonstrated high levels within untreated HT29 cells compared to the majority of other treatments being used, even prior to H2O2 exposure. All enzymes showed significant alterations in activity when cells were treated with antioxidants AA, Apo-bLF or Se-bLF, with and/or without H2O2 exposure. Obvious indications that the Se content of the bLF potentially interacted with the glutathione (GSH)/GPx/GR/GsT associated redox system could be observed immediately, showing capability of Se-bLF being highly beneficial in helping to maintain a balance between the oxidant/antioxidant systems within cells and tissues, especially in selenium deficient systems. In conclusion, the antioxidative defence activity of Se-bLf, investigated in this study for the first time, shows dynamic adaptations that may allow for essential protection from the imbalanced oxidative conditions. Because of its lack of toxicity and the availability of both selenium and bLF in whole milk, Se-bLF offers a promise for a prospective natural dietary supplement, in addition to being an immune system enhancement, or a potential chemopreventive agent for cancers.