898 resultados para cubic boron nitride (c-BN) films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to study the sliding and the vibrating fretting tests mechanism of h-BN micro-particles when used as a lubricating grease-2 additive. Design/methodology/approach: The fretting tests were conducted on steel/steel contacts using both vibrating fretting apparatus and the shaftsleeve slide fitted tester. The wear scars were characterized with profilometry. The tribological properties of grease-2 compounded with h-BN additive were also compared to those obtained for the commercial product Militec-4. Findings: The experiment showed significant differences between the results obtained from the vibrating fretting and the shaft-sleeve sliding fitted tests. Adding h-BN to the lubricant leads to a better performance in the shaft-sleeve slide regime than in the steel/steel vibrating test condition. Originality/value: The results of the experimental studies demonstrate the potential of h-BN as an additive for preventing fretting sliding, and can very useful for further application of compound grease-2 with h-BN additive in industrial equipment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 1013 cm–2 of BN nanomaterials and can be easily realized experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene/hexagonal boron nitride (G/h-BN) heterostructure has attracted tremendous research efforts owing to its great potential for applications in nano-scale electronic devices. In such hybrid materials, tilt grain boundaries (GBs) between graphene and h-BN grains may have unique physical properties, which have not been well understood. Here we have conducted non-equilibrium molecular dynamics simulations to study the energetic and thermal properties of tilt GBs in G/h-BN heterostructures. The effect of misorientation angles of tilt GBs on both GB energy and interfacial thermal conductance are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes successful incorporation of multiwalled boron nitride nanotubes (BNNTs) and various functionalized BNNTs by Lewis bases such as trioctylamine (TOA), tributylamine (TBA), and triphenylphosphine (TPP), etc., in organogels formed by triphenylenevinylene (TPV)-based low molecular weight gelator (LMWG) in toluene and consequent characterization of the resulting gel nanocomposites. Functionalized BNNTs were synthesized first,and the presence of tubular structures with high aspect ratio and increased diameter compared to the starting BNNTs was confirmed by SEM. TEM, and Raman spectroscopy. The micrographs of composites of I and BNNTs showed evidence of wrapping of the gelator molecules on to the BNNT surface presumably brought about by pi-pi stacking and van der Waals interactions, This leads to the formation of densely packed and directionally aligned fibrous networks. Such ``reinforced'' aggregation of the gelator molecules in presence of doped BNNTs led to an increase in the sot-to-gel transition temperature and the solidification temperature of the gel nanocomposites as revealed from differential scanning calorimetry. Rheological investigations of the gel nanocomposites indicate that the flow properties of the resulting materials become resistant to applied stress upon incorporation of even a very low wt % of BNNTs. Finally, the increase in thermal conductivity of the nanocomposite compared to the gelator alone was observed for the temperature range of 0-60 degrees C which may make these composites potentially useful in various applications depending on the choice and the amount of BNNT loading in the composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple methods of preparing boron nitride nanotubes and nanowires have been investigated. The methods involve heating boric acid with activated carbon, multi-walled carbon nanotubes, catalytic iron particles or a mixture of activated carbon and iron particles, in the presence of NH3. While with activated carbon, boron nitride nanowires constitute the primary product, high yields of clean boron nitride nanotubes are obtained with multi-walled carbon nanotubes. Aligned boron nitride nanotubes are produced when aligned multi-walled carbon nanotubes are employed as the starting material suggesting the templating role of the nanotubes. Boron nitride nanotubes with different structures have been obtained by reacting boric acid with NH3 in the presence of a mixture of activated carbon and Fe particles. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15 degrees, and zero for zigzag (0 degrees) and armchair (30 degrees) configurations. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39mA/cm2 and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal stability of cubic-phase GaN (c-GaN) films are investigated by photoluminescence (PL) and Raman scattering spectroscopy. C-GaN films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition. PL measurements show that the near-band-edge emissions in the as-grown GaN layers and thermally treated samples are mainly from c-GaN. No degradation of the optical qualities is observed after thermal annealing. Raman scattering spectroscopy shows that the intensity of the E-2 peak from hexagonal GaN grains increases with annealing temperature for the samples with poor crystal quality, while thermal annealing up to 1000 degrees C has no obvious effect on the samples with high crystal quality. (C) 1999 American Institute of Physics. [S0003-6951(99)04719-1].