990 resultados para cooking oil


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the study was to examine the economic performance as well as perceived social and environmental impacts of organic cotton in Southern Kyrgyzstan on the basis of a comparative field study (44 certified organic farmers and 33 conventional farmers) carried out in 2009. It also investigated farmers’ motivation for and assessment of conversion to organic farming. Cotton yields on organic farms were found to be 10% lower whereby input costs per unit were 42% lower, which resulted in organic farmers having a 20% higher revenue from cotton. Due to lower input costs and organic and fair trade price premiums the average gross margin from organic cotton was 27%. In addition to direct economic benefits organic farmers enjoy a number of additional benefits such as easy access to credits on favourable terms, provision with uncontaminated cotton cooking oil and seed cake as animal feed, marketing support as well as extension and training, services provided by the newly established organic service provider. A big majority of organic farmers perceives an improvement of soil qualities, improved health conditions, and positively assesses their previous decision to convert to organic farming. The major disadvantage of organic farming is the high manual labour input required. In the study area, where manual farm work is mainly women’s work and male labour migration widespread, women are most affected by this negative aspect of organic farming. Altogether, the results suggest that despite the inconvenience of higher work load the advantages of organic farming outweigh the disadvantages and that conversion to organic farming can improve the livelihoods of small-scale farmers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cotton is a leading agricultural non-food commodity associated with soil degradation, water pollution and pesticide poisoning due to high levels of agrochemical inputs. Organic farming is often promoted as a means of addressing the economic, environmental and health risks of conventional cotton production, and it is slowly gaining ground in the global cotton market. Organic and fair trade cotton are widely seen as opportunities for smallholder farmers to improve their livelihoods thanks to higher returns, lower input costs and fewer risks. Despite an increasing number of studies comparing the profitability of organic and non-organic farming systems in developing and industrialized countries, little has been published on organic farming in Central Asia. The aim of this article is to describe the economic performance and perceived social and environmental impacts of organic cotton in southern Kyrgyzstan, drawing on a comparative field study conducted by the author in 2009. In addition to economic and environmental aspects, the study investigated farmers’ motivations toward and assessment of conversion to organic farming. Cotton yields on organic farms were found to be 10% lower, while input costs per unit were 42% lower; as a result, organic farmers’ cotton revenues were 20% higher. Due to lower input costs as well as organic and fair trade price premiums, the average gross margin from organic cotton was 27% higher. In addition to direct economic benefits, organic farmers enjoy other benefits, such as easy access to credit on favorable terms, provision of uncontaminated cottonseed cooking oil and cottonseed cake as animal feed, and marketing support as well as extension and training services provided by newly established organic service providers. The majority of organic farmers perceive improved soil quality, improved health conditions, and positively assess their initial decision to convert to organic farming. The major disadvantage of organic farming is the high manual labor input required. In the study area, where manual farm work is mainly women's work and male labor migration is widespread, women are most affected by this negative aspect of organic farming. Altogether, the results suggest that, despite the inconvenience of a higher workload, the advantages of organic farming outweigh its disadvantages and that conversion to organic farming improves the livelihoods of small-scale farmers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most adverse environmental impacts result from design decisions made long before manufacturing or usage. In order to prevent this situation, several authors have proposed the application of life cycle assessment (LCA) at the very first phases of the design of a process, a product or a service. The study in this paper presents an innovative thermal drying process for sewage sludge called fry-drying, in which dewatered sludge is directly contacted in the dryer with hot recycled cooking oils (RCO) as the heat medium. Considering the practical difficulties for the disposal of these two wastes, fry-drying presents a potentially convenient method for their combined elimination by incineration of the final fry-dried sludge. An analytical comparison between a conventional drying process and the new proposed fry-drying process is reported, with reference to some environmental impact categories. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such system compared to a current disposal process for the drying and incineration of sewage sludge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep-frying, which consists of immersing a wet material in a large volume of hot oil, presents a process easily adaptable to dry rather than cook materials. A suitable material for drying is sewage sludge, which may be dried using recycled cooking oils (RCO) as frying oil. One advantage is that this prepares both materials for convenient disposal by incineration. This study examines fry-drying of municipal sewage sludge using recycled cooking oil. The transport processes occurring during fry-drying were monitored through sample weight, temperature, and image analysis. Due to the thicker and wetter samples than the common fried foods, high residual moisture is observed in the sludge when the boiling front has reached the geometric center of the sample, suggesting that the operation is heat transfer controlled only during the first half of the process followed by the addition of other mechanisms that allow complete drying of the sample. A series of mechanisms comprising four stages (i.e., initial heating accompanied by a surface boiling onset, film vapor regime, transitional nucleate boiling, and bound water removal) is proposed. In order to study the effect of the operating conditions on the fry-drying kinetics, different oil temperatures (from 120 to 180 degrees C), diameter (D = 15 to 25 mm), and initial moisture content of the sample (4.8 and 5.6 kg water(.)kg(-1) total dry solids) were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the use of Pyroformer intermediate pyrolysis system to produce alternative diesel engines fuels (pyrolysis oil) from various biomass and waste feedstocks and the application of these pyrolysis oils in a diesel engine generating system for Combined Heat and Power (CHP) production. The pyrolysis oils were produced in a pilot-scale (20 kg/h) intermediate pyrolysis system. Comprehensive characterisations, with a view to use as engine fuels, were carried out on the sewage sludge and de-inking sludge derived pyrolysis oils. They were both found to be able to provide sufficient heat for fuelling a diesel engine. The pyrolysis oils also presented poor combustibility and high carbon deposition, but these problems could be mitigated by means of blending the pyrolysis oils with biodiesel (derived from waste cooking oil). The blends of SSPO (sewage sludge pyrolysis oil) and biodiesel (30/70 and 50/50 in volumetric ratios) were tested in a 15 kWe Lister type stationary generating system for up to 10 hours. There was no apparent deterioration observed in engine operation. With 30% SSPO blended into biodiesel, the engine presents better overall performance (electric efficiency), fuel consumption, and overall exhaust emissions than with 50% SSPO blend. An overall system analysis was carried out on a proposed integrated Pyroformer-CHP system. Combined with real experimental results, this was used for evaluating the costs for producing heat and power and char from wood pellets and sewage sludge. It is concluded that the overall system efficiencies for both types of plant can be over 40%; however the integrated CHP system is not economically viable. This is due to extraordinary project capital investment required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O crescente consumo de energia, bem como a possibilidade de esgotamento dos recursos não renováveis, tem fomentado a busca de fontes de energia alternativas. O biodiesel é um biocombustível obtido a partir de fontes renováveis e a sua utilização permite reduzir as emissões de gases com efeito de estufa. Nos últimos anos tem-se produzido biodiesel a partir de óleos alimentares usados (OAU), sendo que com esta aplicação valoriza-se um resíduo e simultaneamente produz-se um combustível “verde”. O biodiesel é produzido através das reações de transesterificação e/ou esterificação entre triglicerídeos e/ou ácidos gordos livres e um álcool, na presença de um catalisador. O rendimento do processo está estritamente relacionado com o tipo de catalisador e as condições que este opera. O principal objetivo do presente trabalho consistiu na avaliação do efeito de alguns parâmetros operacionais no desempenho de uma lípase imobilizada (Novozyme® 435), nomeadamente: (i) índice de acidez do óleo, (ii) razão mássica de enzima/óleo e (iii) método regeneração da enzima com vista à sua reutilização. Também foi objeto de estudo do presente trabalho a produção em contínuo, num (bior)reator tubular de leito fixo, de ésteres metílicos de ácidos gordos (FAME) usando a referida enzima. Registou-se um aumento rendimento em com o incremento do índice de acidez do óleo usado, o que indicia que a enzima catalisa simultaneamente as reações de esterificação e transesterificação. Relativamente à razão mássica de enzima/óleo, dentro da gama testada verificou-se um aumento do rendimento em FAME com a concentração da enzima em meio reacional. Dos vários solventes testados, a aplicação de solvente tert-butanol na regeneração (com incubação) da enzima foi o que melhores resultados teve. Finalmente, os resultados obtidos no ensaio de produção de FAME num biorreator contínuo são motivadores, criando expectativas de uma possível aplicação industrial no futuro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a industrial environment, to know the process one is working with is crucial to ensure its good functioning. In the present work, developed at Prio Biocombustíveis S.A. facilities, using process data, collected during the present work, and historical process data, the methanol recovery process was characterized, having started with the characterization of key process streams. Based on the information retrieved from the stream characterization, Aspen Plus® process simulation software was used to replicate the process and perform a sensitivity analysis with the objective of accessing the relative importance of certain key process variables (reflux/feed ratio, reflux temperature, reboiler outlet temperature, methanol, glycerol and water feed compositions). The work proceeded with the application of a set of statistical tools, starting with the Principal Components Analysis (PCA) from which the interactions between process variables and their contribution to the process variability was studied. Next, the Design of Experiments (DoE) was used to acquire experimental data and, with it, create a model for the water amount in the distillate. However, the necessary conditions to perform this method were not met and so it was abandoned. The Multiple Linear Regression method (MLR) was then used with the available data, creating several empiric models for the water at distillate, the one with the highest fit having a R2 equal to 92.93% and AARD equal to 19.44%. Despite the AARD still being relatively high, the model is still adequate to make fast estimates of the distillate’s quality. As for fouling, its presence has been noticed many times during this work. Not being possible to directly measure the fouling, the reboiler inlet steam pressure was used as an indicator of the fouling growth and its growth variation with the amount of Used Cooking Oil incorporated in the whole process. Comparing the steam cost associated to the reboiler’s operation when fouling is low (1.5 bar of steam pressure) and when fouling is high (reboiler’s steam pressure of 3 bar), an increase of about 58% occurs when the fouling increases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents the laboratory scale results of an extra step in Poly (ethylene terephthalate) - PET mechanical recycling (grinding, washing, drying and reprocessing): a chemical washing after the conventional one. Cooking oil PET bottle flakes were washed in water and then subjected to a reaction with an aqueous solution of sodium hydroxide 5 M at 90 degrees C for 10 min (chemical washing). After rinsing and drying, the flakes were characterized by thermogravimetry, gas chromatography and elemental analysis tests. The results indicated that the chemically washed material had higher purity than PET washed only with water: 99.3% and 96.7%, respectively, which undoubtedly implies properties, applications and prices closer to those of virgin resin. The production of purified terephthalic acid (TPA) from the chemical washing residue was optimized and reached a purity of 99.6%. Despite the results, the use of chemically washed PET and of TPA obtained is not recommended for direct contact with food, since they still contain some impurities. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-consumer cooking oil and soft drink PET bottles (PEToil and PETsoft drink) were ground and washed only with water (conventional washing). The polymer was then chemically washed (10min in an aqueous solution of sodium hydroxide 5mol center dot L-1 at 90 degrees C) and rinsed. The materials before and after chemical washing were characterized by intrinsic viscosity, differential scanning calorimetry, thermogravimetry, elemental analysis, scanning electron microscopy with X-ray spectrum microanalysis, and gas chromatography coupled to mass spectrometry. The results indicated that conventionally washed PEToil is the material that most differs among the four tested ones, and that the other three are more similar to each other and to what is expected for pure PET. For example, the composition of PEToil washed only in water contained 30 volatile organic compounds, 5 nonvolatile compounds, and 7 metals, while PETsoft drink washed conventionally and chemically contained 5 volatile organic compounds and no metal or nonvolatile organic compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among the available alternative sources of energy in Bangladesh bio-oil is recognized to be a promising alternative energy source. Bio-oil can be extracted by pyrolysis as well as expelling or solvent extractionmethod. In these days bio-oil is merely used in vehicles and power plants after some up gradation .However, it is not used for domestic purposes like cooking and lighting due to its high density and viscosity. This paper outlines the design of a gravity stove to use high dense and viscous bio-oil for cooking purpose. For this, Pongamia pinnata (karanj) oil extracted by solvent extraction method is used as fuel fed under gravity force. Efficiency of gravity stove with high dense and viscous bio-oil (karanj) is 11.81% which of kerosene stove is 17.80% also the discharge of karanj oil through gravity stove is sufficient for continuous burning. Thus, bio-oil can be effective replacement of kerosene for domestic purposes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considerable attention has been given to development of renewable energy due to imminent depletion of fossil fuels and environmental concerns over global warming. Therefore, it is necessary to find out all the available alternative sources of energy immediately to meet the increasing energy demand of Bangladesh. Among the available alternative sources of energy in Bangladesh bio-oil is recognized to be a promising alternative energy source. In these days bio-oil is merely used in vehicles and power plants after some up gradation .However, it is not used for domestic purposes like cooking and lighting due to it’s high density and viscosity. A gravity stove is designed to use this high dense and viscous bio-oil for cooking purpose. Efficiency of gravity stove with high dense and viscous bio-oil (karanj) is 11.81% which of kerosene stove is 17.80% also the discharge of karanj oil through gravity stove is sufficient for continuous burning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in the total as well as major individual carbonyls of oil sardine during steam cooking, oven drying, sun drying and freeze drying are presented. Carbonyls extracted with hexane were converted to their 2:4 dinitro phenyl hydrazone (DNPH) derivatives and were separated into major classes by column chromatography on celite/magnesia. Individual carbonyls were then identified by capillary gas chromatography of the DNPH derivatives. Dehydration and heating increase the carbonyl production from highly unsaturated fish lipids. The carbonyls produced react with other muscle constituents leading to complex changes. The influence of the mode of dehydration on these different aspects and their net effect on flavour are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Particulate matter generated during the cooking process has been identified as one of the major problems of indoor air quality and indoor environmental health. Reliable assessment of exposure to cooking-generated particles requires accurate information of emission characteristics especially the size distribution. This study characterizes the volume/mass-based size distribution of the fume particles at the oil-heating stage for the typical Chinese-style cooking in a laboratory kitchen. A laser-diffraction size analyzer is applied to measure the volume frequency of fume particles ranged from 0.1 to 10 μm, which contribute to most mass proportion in PM2.5 and PM10. Measurements show that particle emissions have little dependence on the types of vegetable oil used but have a close relationship with the heating temperature. It is found that volume frequency of fume particles in the range of 1.0–4.0 μm accounts for nearly 100% of PM0.1–10 with the mode diameter 2.7 μm, median diameter 2.6 μm, Sauter mean diameter 3.0 μm, DeBroukere mean diameter 3.2 μm, and distribution span 0.48. Such information on emission characteristics obtained in this study can be possibly used to improve the assessment of indoor air quality due to PM0.1–10 in the kitchen and residential flat.