996 resultados para concurrency control
Resumo:
This paper describes the method of field orientation of the stator current vector with respect to the stator, mutual, and rotor flux vectors, for the control of an induction motor fed from a current source inverter (CSI). A control scheme using this principle is described for orienting the stator current with respect to the rotor flux, as this gives natural decoupling between the current coordinates. A dedicated micro-computer system developed for implementing this scheme has been described. The experimental results are also presented.
Resumo:
Each new generation of GPUs vastly increases the resources available to GPGPU programs. GPU programming models (like CUDA) were designed to scale to use these resources. However, we find that CUDA programs actually do not scale to utilize all available resources, with over 30% of resources going unused on average for programs of the Parboil2 suite that we used in our work. Current GPUs therefore allow concurrent execution of kernels to improve utilization. In this work, we study concurrent execution of GPU kernels using multiprogram workloads on current NVIDIA Fermi GPUs. On two-program workloads from the Parboil2 benchmark suite we find concurrent execution is often no better than serialized execution. We identify that the lack of control over resource allocation to kernels is a major serialization bottleneck. We propose transformations that convert CUDA kernels into elastic kernels which permit fine-grained control over their resource usage. We then propose several elastic-kernel aware concurrency policies that offer significantly better performance and concurrency compared to the current CUDA policy. We evaluate our proposals on real hardware using multiprogrammed workloads constructed from benchmarks in the Parboil 2 suite. On average, our proposals increase system throughput (STP) by 1.21x and improve the average normalized turnaround time (ANTT) by 3.73x for two-program workloads when compared to the current CUDA concurrency implementation.
Resumo:
Background: Research indicates a steady increase in marijuana use and that it is concurrent with tobacco. There is speculation this concurrency reaches beyond use, to where policies aimed at reducing one may result in the reduction of the other. Purpose: To investigate the association between tobacco control policies and marijuana use among young adult undergraduates. Methods: A stratified sample of Ontario universities resulted in a sample of 4,966 participants. Results: Campuses with a moderately strong policy was found to be significantly associated with decreased marijuana use compared to campuses with a weak tobacco control policy. (OR=0.52, 95% CI: 0.36-0.76). Conclusions: The findings show tobacco control strategies are related to decreased odds of marijuana use among Ontario undergraduates. These findings are important to both policy makers and researchers interested in health strategies pertaining to marijuana and tobacco use and/or how health policies aimed at reducing one risk behaviour can affect another.
Resumo:
The development of large scale virtual reality and simulation systems have been mostly driven by the DIS and HLA standards community. A number of issues are coming to light about the applicability of these standards, in their present state, to the support of general multi-user VR systems. This paper pinpoints four issues that must be readdressed before large scale virtual reality systems become accessible to a larger commercial and public domain: a reduction in the effects of network delays; scalable causal event delivery; update control; and scalable reliable communication. Each of these issues is tackled through a common theme of combining wall clock and causal time-related entity behaviour, knowledge of network delays and prediction of entity behaviour, that together overcome many of the effects of network delay.
Resumo:
The development of large scale virtual reality and simulation systems have been mostly driven by the DIS and HLA standards community. A number of issues are coming to light about the applicability of these standards, in their present state, to the support of general multi-user VR systems. This paper pinpoints four issues that must be readdressed before large scale virtual reality systems become accessible to a larger commercial and public domain: a reduction in the effects of network delays; scalable causal event delivery; update control; and scalable reliable communication. Each of these issues is tackled through a common theme of combining wall clock and causal time-related entity behaviour, knowledge of network delays and prediction of entity behaviour, that together overcome many of the effects of network delays.
Resumo:
EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC [1] (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS [2] (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 [3] and [4] (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the benefits and limitations of the applied technologies.
Resumo:
Concurrency in Logic Programming has received much attention in the past. One problem with many proposals, when applied to Prolog, is that they involve large modifications to the standard implementations, and/or the communication and synchronization facilities provided do not fit as naturally within the language model as we feel is possible. In this paper we propose a new mechanism for implementing synchronization and communication for concurrency, based on atomic accesses to designated facts in the (shared) datábase. We argüe that this model is comparatively easy to implement and harmonizes better than previous proposals within the Prolog control model and standard set of built-ins. We show how in the proposed model it is easy to express classical concurrency algorithms and to subsume other mechanisms such as Linda, variable-based communication, or classical parallelism-oriented primitives. We also report on an implementation of the model and provide performance and resource consumption data.
Resumo:
A set of software development tools for building real-time control systems on a simple robotics platform is described in the paper. The tools are being used in a real-time systems course as a basis for student projects. The development platform is a low-cost PC running GNU/Linux, and the target system is LEGO MINDSTORMS NXT, thus keeping the cost of the laboratory low. Real-time control software is developed using a mixed paradigm. Functional code for control algorithms is automatically generated in C from Simulink models. This code is then integrated into a concurrent, real-time software architecture based on a set of components written in Ada. This approach enables the students to take advantage of the high-level, model-oriented features that Simulink oers for designing control algorithms, and the comprehensive support for concurrency and real-time constructs provided by Ada.
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.
Resumo:
An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.