986 resultados para collision detection
Resumo:
Femoroacetabular impingement (FAI) is a dynamic conflict of the hip defined by a pathological, early abutment of the proximal femur onto the acetabulum or pelvis. In the past two decades, FAI has received increasing focus in both research and clinical practice as a cause of hip pain and prearthrotic deformity. Anatomical abnormalities such as an aspherical femoral head (cam-type FAI), a focal or general overgrowth of the acetabulum (pincer-type FAI), a high riding greater or lesser trochanter (extra-articular FAI), or abnormal torsion of the femur have been identified as underlying pathomorphologies. Open and arthroscopic treatment options are available to correct the deformity and to allow impingement-free range of motion. In routine practice, diagnosis and treatment planning of FAI is based on clinical examination and conventional imaging modalities such as standard radiography, magnetic resonance arthrography (MRA), and computed tomography (CT). Modern software tools allow three-dimensional analysis of the hip joint by extracting pelvic landmarks from two-dimensional antero-posterior pelvic radiographs. An object-oriented cross-platform program (Hip2Norm) has been developed and validated to standardize pelvic rotation and tilt on conventional AP pelvis radiographs. It has been shown that Hip2Norm is an accurate, consistent, reliable and reproducible tool for the correction of selected hip parameters on conventional radiographs. In contrast to conventional imaging modalities, which provide only static visualization, novel computer assisted tools have been developed to allow the dynamic analysis of FAI pathomechanics. In this context, a validated, CT-based software package (HipMotion) has been introduced. HipMotion is based on polygonal three-dimensional models of the patient’s pelvis and femur. The software includes simulation methods for range of motion, collision detection and accurate mapping of impingement areas. A preoperative treatment plan can be created by performing a virtual resection of any mapped impingement zones both on the femoral head-neck junction, as well as the acetabular rim using the same three-dimensional models. The following book chapter provides a summarized description of current computer-assisted tools for the diagnosis and treatment planning of FAI highlighting the possibility for both static and dynamic evaluation, reliability and reproducibility, and its applicability to routine clinical use.
Resumo:
Esta tesis se ha desarrollado en el contexto del proyecto Cajal Blue Brain, una iniciativa europea dedicada al estudio del cerebro. Uno de los objetivos de esta iniciativa es desarrollar nuevos métodos y nuevas tecnologías que simplifiquen el análisis de datos en el campo neurocientífico. El presente trabajo se ha centrado en diseñar herramientas que combinen información proveniente de distintos canales sensoriales con el fin de acelerar la interacción y análisis de imágenes neurocientíficas. En concreto se estudiará la posibilidad de combinar información visual con información háptica. Las espinas dendríticas son pequeñas protuberancias que recubren la superficie dendrítica de muchas neuronas del cerebro. A día de hoy, se cree que tienen un papel clave en la transmisión de señales neuronales. Motivo por el cual, el interés por parte de la comunidad científica por estas estructuras ha ido en aumento a medida que las técnicas de adquisición de imágenes mejoraban hasta alcanzar una calidad suficiente para analizar dichas estructuras. A menudo, los neurocientíficos utilizan técnicas de microscopía con luz para obtener los datos que les permitan analizar estructuras neuronales tales como neuronas, dendritas y espinas dendríticas. A pesar de que estas técnicas ofrezcan ciertas ventajas frente a su equivalente electrónico, las técnicas basadas en luz permiten una menor resolución. En particular, estructuras pequeñas como las espinas dendríticas pueden capturarse de forma incorrecta en las imágenes obtenidas, impidiendo su análisis. En este trabajo, se presenta una nueva técnica, que permite editar imágenes volumétricas, mediante un dispositivo háptico, con el fin de reconstruir de los cuellos de las espinas dendríticas. Con este objetivo, en un primer momento se desarrolló un algoritmo que proporciona retroalimentación háptica en datos volumétricos, completando la información que provine del canal visual. Dicho algoritmo de renderizado háptico permite a los usuarios tocar y percibir una isosuperficie en el volumen de datos. El algoritmo asegura un renderizado robusto y eficiente. Se utiliza un método basado en las técnicas de “marching tetrahedra” para la extracción local de una isosuperficie continua, lineal y definida por intervalos. La robustez deriva tanto de una etapa de detección de colisiones continua de la isosuperficie extraída, como del uso de técnicas eficientes de renderizado basadas en un proxy puntual. El método de “marching tetrahedra” propuesto garantiza que la topología de la isosuperficie extraída coincida con la topología de una isosuperficie equivalente determinada utilizando una interpolación trilineal. Además, con el objetivo de mejorar la coherencia entre la información háptica y la información visual, el algoritmo de renderizado háptico calcula un segundo proxy en la isosuperficie pintada en la pantalla. En este trabajo se demuestra experimentalmente las mejoras en, primero, la etapa de extracción de isosuperficie, segundo, la robustez a la hora de mantener el proxy en la isosuperficie deseada y finalmente la eficiencia del algoritmo. En segundo lugar, a partir del algoritmo de renderizado háptico propuesto, se desarrolló un procedimiento, en cuatro etapas, para la reconstrucción de espinas dendríticas. Este procedimiento, se puede integrar en los cauces de segmentación automática y semiautomática existentes como una etapa de pre-proceso previa. El procedimiento está diseñando para que tanto la navegación como el proceso de edición en sí mismo estén controlados utilizando un dispositivo háptico. Se han diseñado dos experimentos para evaluar esta técnica. El primero evalúa la aportación de la retroalimentación háptica y el segundo se centra en evaluar la idoneidad del uso de un háptico como dispositivo de entrada. En ambos casos, los resultados demuestran que nuestro procedimiento mejora la precisión de la reconstrucción. En este trabajo se describen también dos casos de uso de nuestro procedimiento en el ámbito de la neurociencia: el primero aplicado a neuronas situadas en la corteza cerebral humana y el segundo aplicado a espinas dendríticas situadas a lo largo de neuronas piramidales de la corteza del cerebro de una rata. Por último, presentamos el programa, Neuro Haptic Editor, desarrollado a lo largo de esta tesis junto con los diferentes algoritmos ya mencionados. ABSTRACT This thesis took place within the Cajal Blue Brain project, a European initiative dedicated to the study of the brain. One of the main goals of this project is the development of new methods and technologies simplifying data analysis in neuroscience. This thesis focused on the development of tools combining information originating from distinct sensory channels with the aim of accelerating both the interaction with neuroscience images and their analysis. In concrete terms, the objective is to study the possibility of combining visual information with haptic information. Dendritic spines are thin protrusions that cover the dendritic surface of numerous neurons in the brain and whose function seems to play a key role in neural circuits. The interest of the neuroscience community toward those structures kept increasing as and when acquisition methods improved, eventually to the point that the produced datasets enabled their analysis. Quite often, neuroscientists use light microscopy techniques to produce the dataset that will allow them to analyse neuronal structures such as neurons, dendrites and dendritic spines. While offering some advantages compared to their electronic counterpart, light microscopy techniques achieve lower resolutions. Particularly, small structures such as dendritic spines might suffer from a very low level of fluorescence in the final dataset, preventing further analysis. This thesis introduces a new technique enabling the edition of volumetric datasets in order to recreate dendritic spine necks using a haptic device. In order to fulfil this objective, we first presented an algorithm to provide haptic feedback directly from volumetric datasets, as an aid to regular visualization. The haptic rendering algorithm lets users perceive isosurfaces in volumetric datasets, and it relies on several design features that ensure a robust and efficient rendering. A marching tetrahedra approach enables the dynamic extraction of a piecewise linear continuous isosurface. Robustness is derived using a Continuous Collision Detection step coupled with acknowledged proxy-based rendering methods over the extracted isosurface. The introduced marching tetrahedra approach guarantees that the extracted isosurface will match the topology of an equivalent isosurface computed using trilinear interpolation. The proposed haptic rendering algorithm improves the coherence between haptic and visual cues computing a second proxy on the isosurface displayed on screen. Three experiments demonstrate the improvements on the isosurface extraction stage as well as the robustness and the efficiency of the complete algorithm. We then introduce our four-steps procedure for the complete reconstruction of dendritic spines. Based on our haptic rendering algorithm, this procedure is intended to work as an image processing stage before the automatic segmentation step giving the final representation of the dendritic spines. The procedure is designed to allow both the navigation and the volume image editing to be carried out using a haptic device. We evaluated our procedure through two experiments. The first experiment concerns the benefits of the force feedback and the second checks the suitability of the use of a haptic device as input. In both cases, the results shows that the procedure improves the editing accuracy. We also report two concrete cases where our procedure was employed in the neuroscience field, the first one concerning dendritic spines in the human cortex, the second one referring to an ongoing experiment studying dendritic spines along dendrites of mouse cortical pyramidal neurons. Finally, we present the software program, Neuro Haptic Editor, that was built along the development of the different algorithms implemented during this thesis, and used by neuroscientists to use our procedure.
Resumo:
The use of digital communication systems is increasing very rapidly. This is due to lower system implementation cost compared to analogue transmission and at the same time, the ease with which several types of data sources (data, digitised speech and video, etc.) can be mixed. The emergence of packet broadcast techniques as an efficient type of multiplexing, especially with the use of contention random multiple access protocols, has led to a wide-spread application of these distributed access protocols in local area networks (LANs) and a further extension of them to radio and mobile radio communication applications. In this research, a proposal for a modified version of the distributed access contention protocol which uses the packet broadcast switching technique has been achieved. The carrier sense multiple access with collision avoidance (CSMA/CA) is found to be the most appropriate protocol which has the ability to satisfy equally the operational requirements for local area networks as well as for radio and mobile radio applications. The suggested version of the protocol is designed in a way in which all desirable features of its precedents is maintained. However, all the shortcomings are eliminated and additional features have been added to strengthen its ability to work with radio and mobile radio channels. Operational performance evaluation of the protocol has been carried out for the two types of non-persistent and slotted non-persistent, through mathematical and simulation modelling of the protocol. The results obtained from the two modelling procedures validate the accuracy of both methods, which compares favourably with its precedent protocol CSMA/CD (with collision detection). A further extension of the protocol operation has been suggested to operate with multichannel systems. Two multichannel systems based on the CSMA/CA protocol for medium access are therefore proposed. These are; the dynamic multichannel system, which is based on two types of channel selection, the random choice (RC) and the idle choice (IC), and the sequential multichannel system. The latter has been proposed in order to supress the effect of the hidden terminal, which always represents a major problem with the usage of the contention random multiple access protocols with radio and mobile radio channels. Verification of their operation performance evaluation has been carried out using mathematical modelling for the dynamic system. However, simulation modelling has been chosen for the sequential system. Both systems are found to improve system operation and fault tolerance when compared to single channel operation.
Resumo:
The local area network (LAN) interconnecting computer systems and soft- ware can make a significant contribution to the hospitality industry. The author discusses the advantages and disadvantages of such systems.
Resumo:
In previous research (Chung et al., 2009), the potential of the continuous risk profile (CRP) to proactively detect the systematic deterioration of freeway safety levels was presented. In this paper, this potential is investigated further, and an algorithm is proposed for proactively detecting sites where the collision rate is not sufficiently high to be classified as a high collision concentration location but where a systematic deterioration of safety level is observed. The approach proposed compares the weighted CRP across different years and uses the cumulative sum (CUSUM) algorithm to detect the sites where changes in collision rate are observed. The CRPs of the detected sites are then compared for reproducibility. When high reproducibility is observed, a growth factor is used for sequential hypothesis testing to determine if the collision profiles are increasing over time. Findings from applying the proposed method using empirical data are documented in the paper together with a detailed description of the method.
Resumo:
Il lavoro di tesi svolto riguarda lo sviluppo e la sperimentazione di un primo prototipo di sistema per l’obstacle detection e collision avoidance, capace di identificare un ostacolo e inibire i comandi del pilota in modo da evitare collisioni.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.
Resumo:
Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.
Resumo:
This paper presents a survey of previously presented vision based aircraft detection flight test, and then presents new flight test results examining the impact of camera field-of view choice on the detection range and false alarm rate characteristics of a vision-based aircraft detection technique. Using data collected from approaching aircraft, we examine the impact of camera fieldof-view choice and confirm that, when aiming for similar levels of detection confidence, an improvement in detection range can be obtained by choosing a smaller effective field-of-view (in terms of degrees per pixel).
Resumo:
The future emergence of many types of airborne vehicles and unpiloted aircraft in the national airspace means collision avoidance is of primary concern in an uncooperative airspace environment. The ability to replicate a pilot’s see and avoid capability using cameras coupled with vision based avoidance control is an important part of an overall collision avoidance strategy. But unfortunately without range collision avoidance has no direct way to guarantee a level of safety. Collision scenario flight tests with two aircraft and a monocular camera threat detection and tracking system were used to study the accuracy of image-derived angle measurements. The effect of image-derived angle errors on reactive vision-based avoidance performance was then studied by simulation. The results show that whilst large angle measurement errors can significantly affect minimum ranging characteristics across a variety of initial conditions and closing speeds, the minimum range is always bounded and a collision never occurs.
Resumo:
Machine vision is emerging as a viable sensing approach for mid-air collision avoidance (particularly for small to medium aircraft such as unmanned aerial vehicles). In this paper, using relative entropy rate concepts, we propose and investigate a new change detection approach that uses hidden Markov model filters to sequentially detect aircraft manoeuvres from morphologically processed image sequences. Experiments using simulated and airborne image sequences illustrate the performance of our proposed algorithm in comparison to other sequential change detection approaches applied to this application.
Resumo:
This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.
Resumo:
This paper reviews a variety of advanced signal processing algorithms that have been developed at the University of Southampton as part of the Prometheus (Programme for European traffic flow with highest efficiency and unprecedented safety) programme to achieve an intelligent driver warning system (IDWS). The IDWS includes the detection of road edges, lanes, obstacles and their tracking and identification, estimates of time to collision, and behavioural modelling of drivers for a variety of scenarios. The underlying algorithms are briefly discussed in support of the IDWS.