937 resultados para coincidence spectroscopy beta decay nuclear mass defect excess
Resumo:
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
Resumo:
The (231Pa/230Th)xs,0 records obtained from two cores from the western (MD97-2138; 1°25'S, 146°24'E, 1900 m) and eastern (ODP Leg 138 Site 849, 0°11.59'N, 110°31.18'W, 3851 m) equatorial Pacific display similar variability over the last 85000 years, i.e. from isotopic stages 1 to 5a, with systematically higher values during the Holocene, isotopic stage 3 and isotopic stage 5a, and lower values, approaching the production rate ratio of the two isotopes (0.093), during the colder periods corresponding to isotopic stages 2 and 4. We have also measured the 230Th-normalized biogenic preserved and terrigenous fluxes, as well as major and trace elements concentrations, in both cores. The (231Pa/230Th)xs,0 results combined with the changes in preserved carbonate and opal fluxes at the eastern site indicate lower productivity in the eastern equatorial Pacific during glacial periods. The (231Pa/230Th)xs,0 variations in the western equatorial Pacific (WEP) also seem to be controlled by productivity (carbonate and/or opal). The generally high (231Pa/230Th)xs,0 ratios (>0.093) of the profile could be due to opal and/or MnO2 in the sinking particles. The profiles of (231Pa/230Th)xs,0 and 230Th-normalized fluxes indicate a decrease in exported carbonate, and possibly opal, during isotopic stages 2 and 4 in MD97-2138. Using 230Th-normalized flux, we also show that sediments from the two cores were strongly affected by sediment redistribution by bottom currents suggesting a control of mass accumulation rates by sediment focusing variability.
Resumo:
The levels in Sn-129 populated from the beta(-) decay of In-129 isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1/2(+) state and the 3/2(+) ground state in 129Sn are expected to have configurations dominated by the neutron s(1/2) (l = 0) and d(3/2) (l = 2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we havemeasured the half-life of the 1/2(+) 315.3-keV state, T-1/2 = 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T-1/2 value by the renormalization of the M1 effective operator for neutron holes.
Resumo:
No clear scenario has yet been able to explain the full carbon drawdown that occurred during the Last Glacial Maximum (LGM); however, increased export production (EP) in the Subantarctic Zone (SAZ) of the Southern Ocean due to iron (Fe) fertilisation has been proposed to have provided a key mechanism affecting the air-sea partitioning of carbon. We chronicle changes in marine EP based on four sediment cores in Subtropical Waters (STW) and SAZ around New Zealand since the LGM. For the first time in this region, we present 230-Thorium normalised fluxes of biogenic opal, carbonate (CaCO3), excess Barium (xsBa), and organic Carbon (Corg). In STW and SAZ, these flux variations show that EP did not change markedly since the LGM. The only exception was a site in the SAZ close to the STF, where we suggest the STF shifted over the core site, driving increased EP. To understand why EP was mostly low and constant we investigated dust deposition changes by measuring lithogenic fluxes at the four sites. These data are coherent with an increased dust deposition in the southwest Pacific during the LGM. Additionally, we infer an increased lithogenic material discharge from erosion and glacier melts during the deglaciation, limited to the Campbell Plateau. Therefore, we propose that even though increased glacial dust deposition may have relieved Fe limitation within the SAZ, the availability of silicic acid (Si(OH)4) limited any resultant increase in carbon export during the LGM. Consequently, we infer low Si(OH)4 concentrations in the SAZ that have not significantly changed since the LGM. This result suggests that both Si(OH)4 and Fe co-limit EP in the SAZ around New Zealand, which would be consistent with modern process studies.
Resumo:
Tese (Doutoramento)
Resumo:
The local order and distribution of Na in the mixed alkali metaphosphate glasses K(x)Na(1-x)PO(3) were analyzed, with the aim to identify segregation or a random mixture of both cation species. X-Ray photoelectron spectroscopy and several nuclear magnetic resonance (NMR) techniques were applied, including (31)P and (23)Na high-resolution spectroscopy, (23)Na triple quantum-MAS NMR, rotational echo double resonance between (31)P and (23)Na, and (23)Na NMR spin echo decay. The structural picture emerging from these results reveals the similarity in the local Na environments in the glasses but also subtle structural adjustments with increasing degree of K replacement. While both cations are intimately mixed at the atomic scale, the (23)Na spin echo decay data suggest a detectable like-cation preference in the spatial distribution of the ions. These structural properties are consistent with those determined in Li-Rb metaphosphates, indicating that the origin of the mixed alkali effect observed in the conductivity of Na-K metaphosphate glasses may also be explained by structurally blocked ion diffusion.
Resumo:
Fungi, including the entomopathogenic deuteromycete Metarhizium anisopliae, produce a wide diversity of secondary metabolites that either can be secreted or stored in specific developmental structures, e.g., conidia. Some secondary metabolites, such as pigments, polyols and mycosporines, are associated with pathogenicity and/or fungal tolerance to several stress-inducing environmental factors, including temperature and solar radiation extremes. Extracts of M. anisopliae var. anisopliae (strain ESALQ-1037) conidia were purified by chromatographic procedures and the isolated compounds analyzed by (1)H and (13)C nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. LC-MS analyses were carried out to search for mycosporines (the initial targets), but no compounds of this class were detected. A molecule whose natural occurrence was previously undescribed was identified. It consists of betaine conjugated with tyrosine, and the structure was identified as 2-([1-carboxy-2-(4-hydroxyphenyl)ethyl]amino)-N,N,N-trimethyl-2-oxoethanammonium. mannitol was the predominant compound in the alcoholic conidial extract, but no amino acids other than tyrosine were found to be conjugated with betaine in conidia. The fungal tyrosine betaine was detected also in conidial extracts of three other M. anisopliae var. anisopliae (ARSEF 1095, 5626 and 5749) and three M. anisopliae var. acridum isolates (ARSEF 324, 3391 and 7486), but it was not detected in Aspergillus nidulans conidial extract (ATCC 10074). (C) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.
Resumo:
During the process of maturation in the oviduct, canine oocytes in the germinal vesicle stage are exposed to decreasing levels of estradiol-17 beta and increasing levels of progesterone. However, hormone concentrations in the microenvironments in which they act are higher than serum concentrations. Therefore, the aim of the present study was to compare the meiotic competence of canine oocytes harvested from anestrous bitches in culture medium containing high concentrations (20 mu g ml(-1)) of estradiol-17 beta and/or progesterone in association to gonadotropins (luteinizing hormone and follicle-stimulating hormone) using three different maturation periods (48, 72, and 96 h). Oocytes were cultured in tissue culture medium (TCM-199) and arranged in four experimental groups: group control, group E2 (estradiol-17 beta), group P4 (progesterone), and group E2 + P4. Regardless of the maturation period, groups P4 and E2 + P4 presented statistically higher rate of germinal vesicle breakdown oocytes compared to the group control and group E2. There were no significant differences among groups on germinal vesicle, metaphase I, metaphase II, and degenerated or unidentifiable oocytes rates. The mean percentage of metaphase II oocytes was higher at 96 h when compared to 72 h. Results of the present research indicate no influence of estradiol-17 beta supplementation, unless in association with progesterone. There is an evidence of the positive effect of progesterone on germinal vesicle breakdown. Results also showed that extended periods of in vitro maturation affect positively maturation rates to metaphase II of low competent oocytes harvested from anestrous bitches, independent of the maturation media. In conclusion, high concentrations of steroids, especially progesterone, have positive effect on in vitro oocyte maturation when the oocytes are derived from the anestrous status.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Novel alternating copolymers comprising biscalix[4]arene-p-phenylene ethynylene and m-phenylene ethynylene units (CALIX-m-PPE) were synthesized using the Sonogashira-Hagihara cross-coupling polymerization. Good isolated yields (60-80%) were achieved for the polymers that show M-n ranging from 1.4 x 10(4) to 5.1 x 10(4) gmol(-1) (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX-m-PPE was performed by H-1, C-13, C-13-H-1 heteronuclear single quantum correlation (HSQC), C-13-H-1 heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform-Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16-45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX-m-PPE does not form ground-or excited-state interchain interactions owing to the highly crowded environment of the main-chain imparted by both calix[4]arene side units which behave as insulators inhibiting main-chain pi-pi staking. It was also found that the luminescent properties of CALIX-m-PPE are markedly different from those of an all-p-linked phenylene ethynylene copolymer (CALIX-p-PPE) previously reported. The unexpected appearance of a low-energy emission band at 426 nm, in addition to the locally excited-state emission (365 nm), together with a quite low fluorescence quantum yield (Phi = 0.02) and a double-exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species.