970 resultados para clinical prediction
Resumo:
L’accident thromboembolique veineux, tel que la thrombose veineuse profonde (TVP) ou thrombophlébite des membres inférieurs, est une pathologie vasculaire caractérisée par la formation d’un caillot sanguin causant une obstruction partielle ou totale de la lumière sanguine. Les embolies pulmonaires sont une complication mortelle des TVP qui surviennent lorsque le caillot se détache, circule dans le sang et produit une obstruction de la ramification artérielle irriguant les poumons. La combinaison d’outils et de techniques d’imagerie cliniques tels que les règles de prédiction cliniques (signes et symptômes) et les tests sanguins (D-dimères) complémentés par un examen ultrasonographique veineux (test de compression, écho-Doppler), permet de diagnostiquer les premiers épisodes de TVP. Cependant, la performance de ces outils diagnostiques reste très faible pour la détection de TVP récurrentes. Afin de diriger le patient vers une thérapie optimale, la problématique n’est plus basée sur la détection de la thrombose mais plutôt sur l’évaluation de la maturité et de l’âge du thrombus, paramètres qui sont directement corrélées à ses propriétés mécaniques (e.g. élasticité, viscosité). L’élastographie dynamique (ED) a récemment été proposée comme une nouvelle modalité d’imagerie non-invasive capable de caractériser quantitativement les propriétés mécaniques de tissus. L’ED est basée sur l’analyse des paramètres acoustiques (i.e. vitesse, atténuation, pattern de distribution) d’ondes de cisaillement basses fréquences (10-7000 Hz) se propageant dans le milieu sondé. Ces ondes de cisaillement générées par vibration externe, ou par source interne à l’aide de la focalisation de faisceaux ultrasonores (force de radiation), sont mesurées par imagerie ultrasonore ultra-rapide ou par résonance magnétique. Une méthode basée sur l’ED adaptée à la caractérisation mécanique de thromboses veineuses permettrait de quantifier la sévérité de cette pathologie à des fins d’amélioration diagnostique. Cette thèse présente un ensemble de travaux reliés au développement et à la validation complète et rigoureuse d’une nouvelle technique d’imagerie non-invasive élastographique pour la mesure quantitative des propriétés mécaniques de thromboses veineuses. L’atteinte de cet objectif principal nécessite une première étape visant à améliorer les connaissances sur le comportement mécanique du caillot sanguin (sang coagulé) soumis à une sollicitation dynamique telle qu’en ED. Les modules de conservation (comportement élastique, G’) et de perte (comportement visqueux, G’’) en cisaillement de caillots sanguins porcins sont mesurés par ED lors de la cascade de coagulation (à 70 Hz), et après coagulation complète (entre 50 Hz et 160 Hz). Ces résultats constituent les toutes premières mesures du comportement dynamique de caillots sanguins dans une gamme fréquentielle aussi étendue. L’étape subséquente consiste à mettre en place un instrument innovant de référence (« gold standard »), appelé RheoSpectris, dédié à la mesure de la viscoélasticité hyper-fréquence (entre 10 Hz et 1000 Hz) des matériaux et biomatériaux. Cet outil est indispensable pour valider et calibrer toute nouvelle technique d’élastographie dynamique. Une étude comparative entre RheoSpectris et la rhéométrie classique est réalisée afin de valider des mesures faites sur différents matériaux (silicone, thermoplastique, biomatériaux, gel). L’excellente concordance entre les deux technologies permet de conclure que RheoSpectris est un instrument fiable pour la mesure mécanique à des fréquences difficilement accessibles par les outils actuels. Les bases théoriques d’une nouvelle modalité d’imagerie élastographique, nommée SWIRE (« shear wave induced resonance dynamic elastography »), sont présentées et validées sur des fantômes vasculaires. Cette approche permet de caractériser les propriétés mécaniques d’une inclusion confinée (e.g. caillot sanguin) à partir de sa résonance (amplification du déplacement) produite par la propagation d’ondes de cisaillement judicieusement orientées. SWIRE a également l’avantage d’amplifier l’amplitude de vibration à l’intérieur de l’hétérogénéité afin de faciliter sa détection et sa segmentation. Finalement, la méthode DVT-SWIRE (« Deep venous thrombosis – SWIRE ») est adaptée à la caractérisation de l’élasticité quantitative de thromboses veineuses pour une utilisation en clinique. Cette méthode exploite la première fréquence de résonance mesurée dans la thrombose lors de la propagation d’ondes de cisaillement planes (vibration d’une plaque externe) ou cylindriques (simulation de la force de radiation par génération supersonique). DVT-SWIRE est appliquée sur des fantômes simulant une TVP et les résultats sont comparés à ceux donnés par l’instrument de référence RheoSpectris. Cette méthode est également utilisée avec succès dans une étude ex vivo pour l’évaluation de l’élasticité de thromboses porcines explantées après avoir été induites in vivo par chirurgie.
Resumo:
Introducción: La bronquiolitis se ha convertido en una patología de alta relevancia clínica y de salud pública, de la cual se han realizado múltiples estudios en cuanto a tratamiento y diagnóstico; Identificar el perfil de los pacientes que presentan esta patología en nuestra población justifica el profundizar en su conocimiento y contexto a nivel local. Metodología: Se realizó un estudio observacional descriptivo de serie de casos. Muestreo consecutivo o secuencial de pacientes con bronquiolitis que cumplieron los criterios de selección, durante el 2011. La información se analizó en SPSS. Se realizó un análisis descriptivo y análisis para determinar la posible asociación entre las variables. Resultados: El total de pacientes en el estudio fue 92. Se encontraron una serie de características comunes, discriminadas en dos grupos, características sociodemográficas de los pacientes y sus padres y características o manifestaciones clínicas de los pacientes, al ingreso, durante y al egreso de su hospitalización. Discusión: Las características sociodemográficas que identifican a los pacientes que presentan bronquiolitis pueden ser determinantes, como pertenecer a población vulnerable, como los pacientes recién nacidos, o lactantes menores; pertenecer a una comunidad en la cual haya presencia de niños en edad escolar. Conclusiones: Los pacientes con riesgo de presentar bronquiolitis, para este estudio, son lactantes menores y recién nacidos; hijos de padres profesionales, y bachilleres, y provenientes de la ciudad de Bogotá. A nivel socio demográfico se encontró que convivir con personas fumadoras y niños en edad escolar no mostró una diferencia en la distribución porcentual de estas variables.
Resumo:
El objetivo de este estudio fue realizar una prueba de validez diagnostica del test neural 1 para el diagnóstico del Síndrome de Túnel del Carpo (STC) utilizando como prueba de referencia o de oro el test de conducción nerviosa. En este estudio participaron 115 sujetos, 230 manos con sospecha clínica de STC quienes fueron evaluados con el test de conducción nerviosa y el test neural 1. Se encontró una sensibilidad del 93.0% (IC 95%:88,21-96,79) y una especificidad del 6,67% (IC 95%:0,0-33,59), razón de verosimilitud positiva fue de 1,00 y razón de verosimilitud negativa de 1,05. Valor predictivo positivo de 86,9% y un valor predictivo negativo de 12,5%. Se concluye que el test neural 1 es una prueba clínica de alta sensibilidad y baja especificidad de gran utilidad para el monitoreo e identificación del STC. Es un procedimiento para el diagnóstico clínico de bajo costo que puede incluirse en los exámenes de rutina de los trabajadores como complemento a las pruebas clínicas sugeridas por las Gatiso para dar mayor precisión a la identificación temprana del STC. Se sugiere combinarla con otros test de mayor especificidad para ser aplicada en trabajadores en condiciones de riesgo o que presenten síntomas en miembros superiores y realizar otros estudios en donde participen sujetos sin diagnóstico clínico del STC.
Resumo:
Objective: To identify potential prognostic factors for pulmonary thromboembolism (PTE), establishing a mathematical model to predict the risk for fatal PTE and nonfatal PTE.Method: the reports on 4,813 consecutive autopsies performed from 1979 to 1998 in a Brazilian tertiary referral medical school were reviewed for a retrospective study. From the medical records and autopsy reports of the 512 patients found with macroscopically and/or microscopically,documented PTE, data on demographics, underlying diseases, and probable PTE site of origin were gathered and studied by multiple logistic regression. Thereafter, the jackknife method, a statistical cross-validation technique that uses the original study patients to validate a clinical prediction rule, was performed.Results: the autopsy rate was 50.2%, and PTE prevalence was 10.6%. In 212 cases, PTE was the main cause of death (fatal PTE). The independent variables selected by the regression significance criteria that were more likely to be associated with fatal PTE were age (odds ratio [OR], 1.02; 95% confidence interval [CI], 1.00 to 1.03), trauma (OR, 8.5; 95% CI, 2.20 to 32.81), right-sided cardiac thrombi (OR, 1.96; 95% CI, 1.02 to 3.77), pelvic vein thrombi (OR, 3.46; 95% CI, 1.19 to 10.05); those most likely to be associated with nonfatal PTE were systemic arterial hypertension (OR, 0.51; 95% CI, 0.33 to 0.80), pneumonia (OR, 0.46; 95% CI, 0.30 to 0.71), and sepsis (OR, 0.16; 95% CI, 0.06 to 0.40). The results obtained from the application of the equation in the 512 cases studied using logistic regression analysis suggest the range in which logit p > 0.336 favors the occurrence of fatal PTE, logit p < - 1.142 favors nonfatal PTE, and logit P with intermediate values is not conclusive. The cross-validation prediction misclassification rate was 25.6%, meaning that the prediction equation correctly classified the majority of the cases (74.4%).Conclusions: Although the usefulness of this method in everyday medical practice needs to be confirmed by a prospective study, for the time being our results suggest that concerning prevention, diagnosis, and treatment of PTE, strict attention should be given to those patients presenting the variables that are significant in the logistic regression model.
Resumo:
Deep venous thrombosis is a relatively common disease, which can present pulmonary embolism as a complication in its acute phase, and later the post-thrombotic syndrome. Thus, diagnosis should be made as soon as possible, in order to prevent or minimize such complications. Several studies have shown that the symptoms and the clinical signs are inaccurate for the deep venous thrombosis diagnosis and that complementary exams are necessary. As an attempt to simplify the patients' assessment, Well et al., in 1997, developed a clinical prediction index that combines symptoms, signs and risk factors for deep venous thrombosis and managed to make a simpler approach through an association of this index with the complementary exams. Phlebography has been considered the gold standard of complementary exams. However, since it is an invasive exam and thus subject to complications, other diagnostic methods were introduced aiming at making the diagnostic approach simpler and less invasive. Doppler ultrasound, duplex scan, impedance plethysmography, computed tomography, and blood tests such as the D-dimer are some of the available methods for assessing the patient with suspicion of deep venous thrombosis. Among them, duplex scan has shown excellent accuracy and it is currently widely accepted as the first choice test for approaching the patient with deep venous thrombosis. Several authors have suggested an association of diagnostic methods to simplify and make the assessment of such patients more cost-effective, leading to the introduction of a wide range of diagnostic strategies. The different diagnostic methods used for assessing deep venous thrombosis are discussed, as well as a review of the literature on the accuracy, advantages and disadvantages of these methods. Copyright © 2005 by Sociedade Brasileira de Angiologia e Cirurgia Vascular.
Resumo:
Clinical scores may help physicians to better assess the individual risk/benefit of oral anticoagulant therapy. We aimed to externally validate and compare the prognostic performance of 7 clinical prediction scores for major bleeding events during oral anticoagulation therapy.
Resumo:
BACKGROUND: In clinical practice a diagnosis is based on a combination of clinical history, physical examination and additional diagnostic tests. At present, studies on diagnostic research often report the accuracy of tests without taking into account the information already known from history and examination. Due to this lack of information, together with variations in design and quality of studies, conventional meta-analyses based on these studies will not show the accuracy of the tests in real practice. By using individual patient data (IPD) to perform meta-analyses, the accuracy of tests can be assessed in relation to other patient characteristics and allows the development or evaluation of diagnostic algorithms for individual patients. In this study we will examine these potential benefits in four clinical diagnostic problems in the field of gynaecology, obstetrics and reproductive medicine. METHODS/DESIGN: Based on earlier systematic reviews for each of the four clinical problems, studies are considered for inclusion. The first authors of the included studies will be invited to participate and share their original data. After assessment of validity and completeness the acquired datasets are merged. Based on these data, a series of analyses will be performed, including a systematic comparison of the results of the IPD meta-analysis with those of a conventional meta-analysis, development of multivariable models for clinical history alone and for the combination of history, physical examination and relevant diagnostic tests and development of clinical prediction rules for the individual patients. These will be made accessible for clinicians. DISCUSSION: The use of IPD meta-analysis will allow evaluating accuracy of diagnostic tests in relation to other relevant information. Ultimately, this could increase the efficiency of the diagnostic work-up, e.g. by reducing the need for invasive tests and/or improving the accuracy of the diagnostic workup. This study will assess whether these benefits of IPD meta-analysis over conventional meta-analysis can be exploited and will provide a framework for future IPD meta-analyses in diagnostic and prognostic research.
Resumo:
OBJECTIVE To assess recommended and actual use of statins in primary prevention of cardiovascular disease (CVD) based on clinical prediction scores in adults who develop their first acute coronary syndrome (ACS). METHOD Cross-sectional study of 3172 adults without previous CVD hospitalized with ACS at 4 university centers in Switzerland. The number of participants eligible for statins before hospitalization was estimated based on the European Society of Cardiology (ESC) guidelines and compared to the observed number of participants on statins at hospital entry. RESULTS Overall, 1171 (37%) participants were classified as high-risk (10-year risk of cardiovascular mortality ≥5% or diabetes); 1025 (32%) as intermediate risk (10-year risk <5% but ≥1%); and 976 (31%) as low risk (10-year risk <1%). Before hospitalization, 516 (16%) were on statins; among high-risk participants, only 236 of 1171 (20%) were on statins. If ESC primary prevention guidelines had been fully implemented, an additional 845 high-risk adults (27% of the whole sample) would have been eligible for statins before hospitalization. CONCLUSION Although statins are recommended for primary prevention in high-risk adults, only one-fifth of them are on statins when hospitalized for a first ACS.
Resumo:
Symptoms of primary ciliary dyskinesia (PCD) are nonspecific and guidance on whom to refer for testing is limited. Diagnostic tests for PCD are highly specialised, requiring expensive equipment and experienced PCD scientists. This study aims to develop a practical clinical diagnostic tool to identify patients requiring testing.Patients consecutively referred for testing were studied. Information readily obtained from patient history was correlated with diagnostic outcome. Using logistic regression, the predictive performance of the best model was tested by receiver operating characteristic curve analyses. The model was simplified into a practical tool (PICADAR) and externally validated in a second diagnostic centre.Of 641 referrals with a definitive diagnostic outcome, 75 (12%) were positive. PICADAR applies to patients with persistent wet cough and has seven predictive parameters: full-term gestation, neonatal chest symptoms, neonatal intensive care admittance, chronic rhinitis, ear symptoms, situs inversus and congenital cardiac defect. Sensitivity and specificity of the tool were 0.90 and 0.75 for a cut-off score of 5 points. Area under the curve for the internally and externally validated tool was 0.91 and 0.87, respectively.PICADAR represents a simple diagnostic clinical prediction rule with good accuracy and validity, ready for testing in respiratory centres referring to PCD centres.
Resumo:
The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.
Resumo:
Maximizing data quality may be especially difficult in trauma-related clinical research. Strategies are needed to improve data quality and assess the impact of data quality on clinical predictive models. This study had two objectives. The first was to compare missing data between two multi-center trauma transfusion studies: a retrospective study (RS) using medical chart data with minimal data quality review and the PRospective Observational Multi-center Major Trauma Transfusion (PROMMTT) study with standardized quality assurance. The second objective was to assess the impact of missing data on clinical prediction algorithms by evaluating blood transfusion prediction models using PROMMTT data. RS (2005-06) and PROMMTT (2009-10) investigated trauma patients receiving ≥ 1 unit of red blood cells (RBC) from ten Level I trauma centers. Missing data were compared for 33 variables collected in both studies using mixed effects logistic regression (including random intercepts for study site). Massive transfusion (MT) patients received ≥ 10 RBC units within 24h of admission. Correct classification percentages for three MT prediction models were evaluated using complete case analysis and multiple imputation based on the multivariate normal distribution. A sensitivity analysis for missing data was conducted to estimate the upper and lower bounds of correct classification using assumptions about missing data under best and worst case scenarios. Most variables (17/33=52%) had <1% missing data in RS and PROMMTT. Of the remaining variables, 50% demonstrated less missingness in PROMMTT, 25% had less missingness in RS, and 25% were similar between studies. Missing percentages for MT prediction variables in PROMMTT ranged from 2.2% (heart rate) to 45% (respiratory rate). For variables missing >1%, study site was associated with missingness (all p≤0.021). Survival time predicted missingness for 50% of RS and 60% of PROMMTT variables. MT models complete case proportions ranged from 41% to 88%. Complete case analysis and multiple imputation demonstrated similar correct classification results. Sensitivity analysis upper-lower bound ranges for the three MT models were 59-63%, 36-46%, and 46-58%. Prospective collection of ten-fold more variables with data quality assurance reduced overall missing data. Study site and patient survival were associated with missingness, suggesting that data were not missing completely at random, and complete case analysis may lead to biased results. Evaluating clinical prediction model accuracy may be misleading in the presence of missing data, especially with many predictor variables. The proposed sensitivity analysis estimating correct classification under upper (best case scenario)/lower (worst case scenario) bounds may be more informative than multiple imputation, which provided results similar to complete case analysis.^
Resumo:
In diagnosis and prognosis, we should avoid intuitive “guesstimates” and seek a validated numerical aid
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Introduction: As the relative burden of community-acquired bacterial pneumonia among HIV-positive patients increases, adequate prediction of case severity on presentation is crucial. We sought to determine what characteristics measurable on presentation are predictive of worse outcomes. Methods: We studied all admissions for community-acquired bacterial pneumonia over 1 year at a tertiary centre. Patient demographics, comorbidities, HIV-specific markers and CURB-65 scores on Emergency Department presentation were reviewed. Outcomes of interest included mortality, bacteraemia, intensive care unit admission and orotracheal intubation. Results: A total of 396 patients were included, 49 HIV positive and 347 HIV negative. Mean CURB-65 score was 1.3 for HIV-positive and 2.2 for HIV-negative patients (p<0.0001), its predictive value for mortality being maintained in both groups (p¼0.03 and p<0.001, respectively). Adjusting for CURB-65 scores, HIV infection by itself was only associated with bacteraemia (adjusted odds ratio 7.1 CI 95% [2.6–19.5]). Patients with<200 CD4 cells/mL presented similar CURB- 65 adjusted mortality (adjusted odds ratio 1.7 CI 95% [0.2–15.2]), but higher risk of intensive care unit admission (adjusted odds ratio 5.7 CI 95% [1.5–22.0]) and orotracheal intubation (adjusted odds ratio 9.1 CI 95% [2.2–37.1]), compared to HIV-negative patients. These two associations were not observed in the>200 CD4 cells/mL subgroup (adjusted odds ratio 2.2 CI 95% [0.7–7.6] and adjusted odds ratio 0.8 CI 95% [0.1–6.5] respectively). Antiretroviral therapy and viral load suppression were not associated with different outcomes (p>0.05). Conclusions: High CURB-65 scores and CD4 counts<200 cells/mL were both associated with worse outcomes. Severity assessment scales and CD4 counts may both be helpful in predicting severity in HIV-positive patients presenting with community-acquired bacterial pneumonia.
Resumo:
Les arthroplasties totales de la hanche (ATH) et du genou (ATG) sont souvent offertes aux patients atteints de dégénérescence articulaire sévère. Bien qu’efficace chez la majorité des patients, ces interventions mènent à des résultats sous-optimaux dans de nombreux cas. Il demeure difficile d’identifier les patients à risque de résultats sous-optimaux à l’heure actuelle. L’identification de ces patients avant la chirurgie pourrait permettre d’optimiser la gamme de soins et de services offerts et de possiblement améliorer les résultats de leur chirurgie. Ce mémoire a comme objectifs : 1) de réaliser une revue systématique des déterminants associés à la douleur et aux incapacités fonctionnelles rapportées par les patients à moyen-terme suivant ces deux types d’arthroplastie et 2) de développer des modèles de prédiction clinique permettant l’identification des patients à risque de mauvais résultats en terme de douleur et d’incapacités fonctionnelles suivant l’ATH et l’ATG. Une revue systématique de la littérature identifiant les déterminants de la douleur et de la fonction suivant l’ATH et l’ATG a été réalisée dans quatre bases de données jusqu’en avril 2015 et octobre 2014, respectivement. Afin de développer un algorithme de prédiction pouvant identifier les patients à risque de résultats sous-optimaux, nous avons aussi utilisé des données rétrospectives provenant de 265 patients ayant subi une ATH à l’Hôpital Maisonneuve-Rosemont (HMR) de 2004 à 2010. Finalement, des données prospectives sur 141 patients recrutés au moment de leur inclusion sur une liste d’attente pour une ATG dans trois hôpitaux universitaires à Québec, Canada et suivis jusqu’à six mois après la chirurgie ont permis l’élaboration d’une règle de prédiction clinique permettant l’identification des patients à risque de mauvais résultats en terme de douleur et d’incapacités fonctionnelles. Vingt-deux (22) études d’une qualité méthodologique moyenne à excellente ont été incluses dans la revue. Les principaux déterminants de douleur et d’incapacités fonctionnelles après l’ATH incluaient: le niveau préopératoire de douleur et de fonction, un indice de la masse corporelle plus élevé, des comorbidités médicales plus importantes, un état de santé générale diminué, une scolarité plus faible, une arthrose radiographique moins sévère et la présence d’arthrose à la hanche controlatérale. Trente-quatre (34) études évaluant les déterminants de douleur et d’incapacités fonctionnelles après l’ATG avec une qualité méthodologique moyenne à excellente ont été évaluées et les déterminants suivant ont été identifiés: le niveau préopératoire de douleur et de fonction, des comorbidités médicales plus importantes, un état de santé générale diminué, un plus grands niveau d’anxiété et/ou de symptômes dépressifs, la présence de douleur au dos, plus de pensées catastrophiques ou un faible niveau socioéconomique. Pour la création d’une règle de prédiction clinique, un algorithme préliminaire composé de l’âge, du sexe, de l’indice de masse corporelle ainsi que de trois questions du WOMAC préopératoire a permis l’identification des patients à risque de résultats chirurgicaux sous-optimaux (pire quartile du WOMAC postopératoire et percevant leur hanche opérée comme artificielle avec des limitations fonctionnelles mineures ou majeures) à une durée moyenne ±écart type de 446±171 jours après une ATH avec une sensibilité de 75.0% (95% IC: 59.8 – 85.8), une spécificité de 77.8% (95% IC: 71.9 – 82.7) et un rapport de vraisemblance positif de 3.38 (98% IC: 2.49 – 4.57). Une règle de prédiction clinique formée de cinq items du questionnaire WOMAC préopratoire a permis l’identification des patients en attente d’une ATG à risque de mauvais résultats (pire quintile du WOMAC postopératoire) six mois après l’ATG avec une sensibilité de 82.1 % (95% IC: 66.7 – 95.8), une spécificité de 71.7% (95% IC: 62.8 – 79.8) et un rapport de vraisemblance positif de 2.9 (95% IC: 1.8 – 4.7). Les résultats de ce mémoire ont permis d’identifier, à partir de la littérature, une liste de déterminants de douleur et d’incapacités fonctionnelles après l’ATH et l’ATG avec le plus haut niveau d’évidence à ce jour. De plus, deux modèles de prédiction avec de très bonnes capacités prédictives ont été développés afin d’identifier les patients à risque de mauvais résultats chirurgicaux après l’ATH et l’ATG. L’identification de ces patients avant la chirurgie pourrait permettre d’optimiser leur prise en charge et de possiblement améliorer les résultats de leur chirurgie.