964 resultados para classical integral transforms
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.
Resumo:
In this paper, we show that the equation delta u/delta (z) over bar + Gu = f, where the elements involved are in generalized functions context, has a local solution in the generalized functions context.
Resumo:
This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.
Resumo:
Includes bibliographical references (p. 58-59)
Resumo:
This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.
Resumo:
Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20
Resumo:
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These non-local models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.
Resumo:
Mathematics Subject Classification: 44A05, 44A35
Resumo:
The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform ( KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging.
Resumo:
In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.
Resumo:
We obtain a new series of integral formulae for symmetric functions of curvature of a distribution of arbitrary codimension (an its orthogonal complement) given on a compact Riemannian manifold, which start from known formula by P.Walczak (1990) and generalize ones for foliations by several authors: Asimov (1978), Brito, Langevin and Rosenberg (1981), Brito and Naveira (2000), Andrzejewski and Walczak (2010), etc. Our integral formulae involve the co-nullity tensor, certain component of the curvature tensor and their products. The formulae also deal with a number of arbitrary functions depending on the scalar invariants of the co-nullity tensor. For foliated manifolds of constant curvature the obtained formulae give us the classical type formulae. For a special choice of functions our formulae reduce to ones with Newton transformations of the co-nullity tensor.
Resumo:
We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[superscript] / T d[superscript] and the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained results in particular is given by the equivalence results for functions satisfying certain regular conditions. Applications include a quantitative form of the Riemann-Lebesgue lemma as well as several other questions in approximation theory and the theory of function spaces.
Resumo:
While the syncretistic Tibetan tradition known as rDzogs chen ("Great Perfection") has attracted considerable attention over the past few decades, its philosophical foundations remain largely unknown to those unacquainted with its primary sources. This thesis looks at the essentials of rDzogs chen philosophy through the lens of two principal distinctions that the tradition has considered indispensable for understanding its distinctive views and practices: dualistic mind (sems) versus primordial knowing (ye shes) and dharmakâya versus the 'ground of all' (kun gzhi) conditioned experience. Arguing that the distinctions provided classical rDzogs chen scholars with a crucial framework for (a) articulating the necessary conditions of nondual primordial knowing, the conditio sine qua non of rNying ma soteriology, and (b) schematizing the relationship between the exoteric and esoteric vehicles of Indian Buddhism within a unifying conception of the Buddhist path as the progressive disclosure of primordial knowing, the thesis shows how the rDzogs chen philosophy of mind has been integral to the tradition's complex soteriology. The thesis consists of two parts: (1) a detailed philosophical investigation of the distinctions and (2) an anthology of previously untranslated Tibetan materials on the distinctions accompanied by critical editions and introductions. The first part systematically invesigates the nature and scope of the distinctions and traces their evolution and complex relationships with Indian Buddhist Cittamâtra, Madhyamaka, Pramàriavàda, and Vajrayâna views. It concludes with an exploration of some soteriological implications of the mind/primordial knowing distinction that became central to rDzogs chen path hermeneutics in the classical period as authors of rDzogs chen path summaries used this distinction to reconcile progressivist sutric and non-progressivist tantric models of the Buddhist path. The translations and texts included in part two of the thesis consist of (a) a short treatise from Klong chen pa's Miscellaneous Writings entitled Sems dang ye shes kyi dris lan (Reply to Questions Concerning Mind and Primordial Knowing), (b) selected passages on the distinctions from this author's monumental summary of the rDzogs chen snying thig system, the Theg mchog mdzod (Treasury of the Supreme Vehicle), and (c) an excerpt on rDzogs chen distinctions taken from 'Jigs med gling pa's (1729-1798) 18th century Klong chen sNying thig path summary entitled Treasury of Qualities (Yon tan mdzod) along with a word-by- word commentary by Yon tan rgya mtsho (b. 19th c.).
Resumo:
Exact solutions of the classical equations corresponding to the leading-logarithm approximation are obtained. They are classified by an (integer) topological number.