994 resultados para classical integral transforms
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
We present the extension of a methodology to solve moving boundary value problems from the second-order case to the case of the third-order linear evolution PDE qt + qxxx = 0. This extension is the crucial step needed to generalize this methodology to PDEs of arbitrary order. The methodology is based on the derivation of inversion formulae for a class of integral transforms that generalize the Fourier transform and on the analysis of the global relation associated with the PDE. The study of this relation and its inversion using the appropriate generalized transform are the main elements of the proof of our results.
Resumo:
We present two extension theorems for holomorphic generalized functions. The first one is a version of the classic Hartogs extension theorem. In this, we start from a holomorphic generalized function on an open neighbourhood of the bounded open boundary, extending it, holomorphically, to a full open. In the second theorem a generalized version of a classic result is obtained, done independently, in 1943, by Bochner and Severi. For this theorem, we start from a function that is holomorphic generalized and has a holomorphic representative on the bounded domain boundary, we extend it holomorphically the function, for the whole domain.
Resumo:
The purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.
Resumo:
In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.
Resumo:
In this paper, we show that the equation delta u/delta (z) over bar + Gu = f, where the elements involved are in generalized functions context, has a local solution in the generalized functions context.
Resumo:
This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.
Resumo:
Includes bibliographical references (p. 58-59)
Resumo:
This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.
Resumo:
Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20
Resumo:
In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These non-local models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.
Resumo:
Mathematics Subject Classification: 44A05, 44A35