963 resultados para circadian and ultradian rhythms
Resumo:
The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.
Resumo:
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca2+ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca2+ baseline concentration and frequency of oscillating Ca2+ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca2+ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1–4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca2+ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K+ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K+ and Na+ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.
Resumo:
The suprachiasmatic nucleus, an essential diencephalic component of the circadian timing system, plays a role in the generation and modulation of behavioral and neuroendocrine rhythms in mammals. Its cytoarchitecture, neurochemical and hodological characteristics have been investigated in various mammalian species, particularly in rodents. In most species, two subdivisions, based on these aspects and considered to reflect functional specialization within the nucleus, can be recognized. Many studies reveal a typical dense innervation by serotonergic fibers in this nucleus, mainly in the ventromedial area, overlapping the retinal afferents. However, a different pattern occurs in certain animals, which lead us to investigate the distribution of serotonergic afferents in the suprachiasmatic nucleus of the Capuchin monkey, Cebus apella, compared to the marmoset, Callithrix jacchus, and two Rattus norvegicus lines (Long Evans and Wistar), and to reported findings for other mammalian species. Our morphometric data show the volume and length of the suprachiasmatic nucleus along the rostrocaudal axis to be greatest in C. apella > C. jacchus > Long Evans ≥ Wistar rats, in agreement with their body sizes. In C. apella, however, the serotonergic terminals occupy only some 10% of the nucleus' area, less than the 25% seen in the marmoset and rats. The distribution of the serotonergic fibers in C. apella does not follow the characteristic ventral organization pattern seen in the rodents. These findings raise questions concerning the intrinsic organization of the nucleus, as well as regarding the functional relationship between serotonergic input and retinal afferents in this diurnal species. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Shiftwork-induced sleep deprivation and circadian disruption probably leads to an increase in the production of cytokines and dysregulation of innate immune system, respectively. This project aims evaluating changes in salivary IL-1 beta, cortisol, and melatonin in night workers. Method. Two day and three night healthy workers participated in this study. Sleep was evaluated by actimetry and activity protocols. Saliva was collected at waking and bedtime the last workday and the following two days-off and was analyzed by ELISA. Results. Neither sleep duration nor efficiency showed any association with salivary IL-1beta. IL-1beta levels were higher at waking than at bedtime during working days for all workers, but only one day and one night-worker maintained this pattern and hormone rhythms during days off. For this night worker, melatonin levels were shifted to daytime. A second one presented clear alterations in IL-1beta and hormone rhythms on days-off. Conclusions. Our preliminary results suggest that night work can disturb the variation pattern of salivary IL-1beta. No association of this variation with sleep was observed. It seems that disruption in hormone rhythms interfere with salivary IL-1beta production. IL-1beta production pattern seems to be maintained when rhythms are present, in spite of a shift in melatonin secretion.
Resumo:
This paper discusses several complex systems in the perspective of fractional dynamics. For prototype systems are considered the cases of deoxyribonucleic acid decoding, financial evolution, earthquakes events, global warming trend, and musical rhythms. The application of the Fourier transform and of the power law trendlines leads to an assertive representation of the dynamics and to a simple comparison of their characteristics. Moreover, the gallery of different systems, both natural and man made, demonstrates the richness of phenomena that can be described and studied with the tools of fractional calculus.
Resumo:
The crossbreeding activities of the Schistosoma mansoni vector snail Biomphalaria glabrata were counted in a laboratory aquarium throughout the year under two regimes of 12h light: 12h dark from 7 A., M. to 10 P. M. Mating increased significantly in Authmn and Winter and just missed a significant inverse correlation with temperature and a direct one with locomotion. Other similar experiments were carried out to compare mating under various ilumination conditions in complete daily cycle measurements. Mating counts decreased under the regimes which submited snail to a total exposure of 12h light and 12 dark during a daily cycle in the following sequence: 12h light: 12h dark alternating hourly with light gradient, 12h light: 12h dark, 1h light: 1h dark and 12h dark: 12h light. Under two constant illuminations, the mating scored less than under the previous conditions, except under 12h light. Under darkeness the mating count was lower than light conditions. There was no way to differentiate the night and day rhythms of mating on different days in each regime, except for mating under 12h light: 12 dark alternating with light gradient, constant dark and 12h dark: 12h light conditions. Mating increased in certain light and temperature conditions, in wich the intensities, should have an optimum value.
Resumo:
The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.
Resumo:
The circadian timing system controls cell cycle, apoptosis, drug bioactivation, and transport and detoxification mechanisms in healthy tissues. As a consequence, the tolerability of cancer chemotherapy varies up to several folds as a function of circadian timing of drug administration in experimental models. Best antitumor efficacy of single-agent or combination chemotherapy usually corresponds to the delivery of anticancer drugs near their respective times of best tolerability. Mathematical models reveal that such coincidence between chronotolerance and chronoefficacy is best explained by differences in the circadian and cell cycle dynamics of host and cancer cells, especially with regard circadian entrainment and cell cycle variability. In the clinic, a large improvement in tolerability was shown in international randomized trials where cancer patients received the same sinusoidal chronotherapy schedule over 24h as compared to constant-rate infusion or wrongly timed chronotherapy. However, sex, genetic background, and lifestyle were found to influence optimal chronotherapy scheduling. These findings support systems biology approaches to cancer chronotherapeutics. They involve the systematic experimental mapping and modeling of chronopharmacology pathways in synchronized cell cultures and their adjustment to mouse models of both sexes and distinct genetic background, as recently shown for irinotecan. Model-based personalized circadian drug delivery aims at jointly improving tolerability and efficacy of anticancer drugs based on the circadian timing system of individual patients, using dedicated circadian biomarker and drug delivery technologies.
Resumo:
Zebrafish and Xenopus have become popular model organisms for studying vertebrate development of many organ systems, including the heart. However, it is not clear whether the single ventricular hearts of these species possess any equivalent of the specialized ventricular conduction system found in higher vertebrates. Isolated hearts of adult zebrafish (Danio rerio) and African toads (Xenopus laevis) were stained with voltage-sensitive dye and optically mapped in spontaneous and paced rhythms followed by histological examination focusing on myocardial continuity between the atrium and the ventricle. Spread of the excitation wave through the atria was uniform with average activation times of 20 +/- 2 and 50 +/- 2 ms for zebrafish and Xenopus toads, respectively. After a delay of 47 +/- 8 and 414 +/- 16 ms, the ventricle became activated first in the apical region. Ectopic ventricular activation was propagated significantly more slowly (total ventricular activation times: 24 +/- 3 vs. 14 +/- 2 ms in zebrafish and 74 +/- 14 vs. 35 +/- 9 ms in Xenopus). Although we did not observe any histologically defined tracts of specialized conduction cells within the ventricle, there were trabecular bands with prominent polysialic acid-neural cell adhesion molecule staining forming direct myocardial continuity between the atrioventricular canal and the apex of the ventricle; i.e., the site of the epicardial breakthrough. We thus conclude that these hearts are able to achieve the apex-to-base ventricular activation pattern observed in higher vertebrates in the apparent absence of differentiated conduction fascicles, suggesting that the ventricular trabeculae serve as a functional equivalent of the His-Purkinje system.
Resumo:
This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.
Resumo:
Introducción: Uno de los aspectos con mayor variación durante la adolescencia es el sueño, el cual se ve afectado por factores biológicos así como por los estados afectivos y emocionales. En esta etapa, los individuos establecen sus primeras relaciones sentimentales románticas, vínculos esenciales para la maduración de las relaciones sociales y psicosexuales. Este trabajo busca determinar la asociación existente entre las relaciones sentimentales románticas y sus características, con la calidad sueño percibida por los jóvenes. Metodología: Estudio realizado en una población de 1794 estudiantes de ciencias de la salud entre los 18 y 25 años de edad en Bogotá, Colombia, entre 2012 y 2013. Se obtuvo una muestra probabilística con asignación proporcional de 443 sujetos, estratificada por programa académico y sexo. Utilizando dos cuestionarios de auto reporte se exploraron las características de las relaciones sentimentales y la calidad de sueño percibida. Resultados: El 64% (IC 95%: 59,4-68,9%) de la población estudiada se encontró en una relación sentimental romántica. Estos sujetos tuvieron latencias de sueño prolongadas con menor frecuencia que quienes no tenían en una relación (p <0,05). La calidad de sueño percibida se asoció al nivel de satisfacción que tuvieron los sujetos en su relación, así como la atracción por su pareja. Rasgos obsesivos, ansiosos, temerosos y evitativos en la relación disminuyeron la calidad de sueño percibida. Conclusión: Las relaciones sentimentales románticas y sus características se asocian con la calidad de sueño percibida por los individuos. Se requieren estudios que determinen causalidad en esta asociación y definan potenciales estrategias de intervención al respecto.
Resumo:
Introducción: La melatonina, una sustancia cronobiótica endógena, es cada vez más empleada para el manejo de los problemas del sueño en adultos mayores por su aparente eficacia y buen perfil de eventos adversos. En este sentido, se intentó evaluar la eficacia de la melatonina en el tratamiento del insomnio primario en el adulto mayor (≥55 años) comparado con benzodiacepinas, zopiclona y placebo a la luz de la evidencia disponible en los últimos cinco años. Métodos: Revisión sistemática de la literatura. Resultados: En comparación con placebo, al parecer la melatonina mejora la calidad y los hábitos de sueño, no así la latencia de inicio de sueño en mediciones subjetivas ni objetivas (polisomnografía); a diferencia de otros medicamentos hipnóticos, no altera la arquitectura del sueño ni genera síntomas diurnos. Conclusiones: No se encontró evidencia que soporte el uso de melatonina en adultos mayores de 55 años para la reducción de la latencia de sueño, aumento del tiempo total de sueño, mejoría de la eficiencia del sueño, disminución de despertares nocturnos o mejoría de la calidad de sueño. Es necesario adelantar más estudios en comparación con placebo y otros medicamentos.
Resumo:
The development of circadian sleep-wakefulness rhythm was investigated by a longitudinal study of six normal infants. We propose an entropy based measure for the sleep/wake cycle fragmentation. Our results confirm that the sleep/wake cycle fragmentation and the sleep/wake ratio decrease, while the circadian power increases during the maturation process of infants. In addition to these expected linear trends in the variables devised to quantify sleep consolidation, circadian power and sleep/wake ratio, we found that they present infradian rhythms in the monthly range. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone produced by the pineal gland that works to regulate sleep/wake cycles and activity rhythms. The effects of melatonin in metabolism are far from understood. Melatonin was injected into the fiddler crab, Uca pugilator, to investigate the effects of melatonin on hemolymph glucose and lactate levels. Following injection at t=O, hemolymph samples were collected at t=O.5, 1.0, 1.5 and 5.0 hours. Melatonin caused a decrease in the stress response to injection and also caused delayed hyperglycemia. Melatonin-injected crabs also retained the glucose and lactate rhythymicity when compared to saline-injected crabs. Glucose and lactate rhythms followed the same pattern indicating that the cycles are coupled. Also, melatonin was synthesized using tbe Fischer Indole synthesis and characterized using H?NMR. The synthetic melatonin demonstrated biological activity when injected into the crabs as when compared to pure melatonin on the effects on glucose and lactate concentrations. Overall, melatonin influences both glucose metabolism and the production of lactate.
Resumo:
Most of ontogenetic studies on circadian timing system have been developed on infants, adults and elderly. The puberty has not been a stage of life few studied, except for researches in human adolescents, that presents phase delay in sleep-wake cycle. However, few studies have focused on the basis of this circadian change due to methodological difficulties. Thus, an animal model to study the sleep-wake cycle at puberty is essential. In the common marmoset, a social primate, the circadian activity periodicity stabilizes around 4 months (juvenile stage) and the 8h period component has a seasonal variation. Puberty stage of this species begins near the 8th month of age in males and near the 7th month in females with 7 months of duration. With the aim to characterize the circadian motor activity rhythm during puberty in marmosets (Callithrix jacchus) the motor activity was continuous registered by actiwatches in 6 animals between 5-12 months. Since the social factor influence the behavior of this specie, behavioral observations were realized in 30 minutes windows twice/week to a general evaluation of the influence social interactions dynamic across experiment. Determination of puberty onset was done by fecal progesterone and estrogens in females, and androgens in males. From the analysis of the multiple regression test was selected a model that evaluate age and seasonal variables effect on the activity rhythm according to the higher explanation coefficient. The total activity was the only parameter influenced by age. Moreover, the activity onset was the parameter more explained by the model, and the sunrise was the factor that most influenced it. After the puberty onset, 2 dyads advanced the activity onset. The activity total decreased in 1 dyad and increased in 2 dyads. This increase may be related to the birth of infants in these families. The motor activity circadian component stabilized later in 1 dyad, coinciding with the puberty onset of these animals, while bimodality, caused by the 8 h component, was modulated by seasonality. The agonistic behavior was not evaluated due to reduced number of events. There were changes across ages in affiliative behavior of contact in 1 dyad, grooming done in 1 animal and grooming received in 2 animals. Although there is evidence of puberty effect on the activity motor rhythm, the photoperiodic fluctuations influenced the rhythm. Therefore is not possible to affirm if the puberty modulate the activity rhythm in marmosets