927 resultados para cell apoptosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of triptolide on the induction of cell apoptosis in human gastric cancer BGC-823 cells. Methods: The cytotoxicity of triptolide was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay. The effect of triptolide on cell proliferation was measured using lactate dehydrogenase (LDH) assay. Cell apoptosis was determined by Annexin V/propidium iodide (PI) double-staining assay. Results: MTT results indicate that triptolide significantly decreased cancer cell numbers in dose- and time-dependent manners in MTT assay. Data from LDH assay showed that triptolide markedly induced cytotoxicity in gastric cancer cells. Triptolide also remarkably induced both early and late apoptotic process in BGC-823 cells. In addition, the compound down-regulated the expression of anti-apoptotic Bcell lymphoma-2 (bcl-2) and up-regulated the expression of pro-apoptotic BCL-2-associated X (bax) in a dose-dependent manner. Furthermore, the pro-apoptotic activity of triptolide was involved in the activation of caspase-3 pathway in BGC-823 cells. Conclusion: Taken together, the findings strongly indicates that the pro-apoptotic activity of triptolide is regulated by caspase 3-dependent cascade pathway, and thus needs to be further developed for cancer therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pancreatic beta-cell apoptosis is known to participate in the beta-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agaricus blazei Murill is a native Brazilian mushroom which functions primarily as an anticancer substance in transplanted mouse tumors. However, the mechanism underlying this function of A. blazei Murill remains obscure. The present study was carried out to investigate the effect of fraction FA-2-b-ß, an RNA-protein complex isolated from A. blazei Murill, on human leukemia HL-60 cells in vitro. Typical apoptotic characteristics were determined by morphological methods using DNA agarose gel electrophoresis and flow cytometry. The growth suppressive effect of fraction FA-2-b-ß on HL-60 cells in vitro occurred in a dose- (5-80 µg/mL) and time-dependent (24-96 h) manner. The proliferation of HL-60 cells (1 x 10(5) cells/mL) treated with 40 µg/mL of fraction FA-2-b-ß for 24-96 h and with 5-80 µg/mL for 96 h resulted in inhibitory rates ranging from 8 to 54.5%, and from 4.9 to 86.3%, respectively. Both telomerase activity determined by TRAP-ELISA and mRNA expression of the caspase-3 gene detected by RT-PCR were increased in HL-60 cells during fraction FA-2-b-ß treatment. The rate of apoptosis correlated negatively with the decrease of telomerase activity (r = 0.926, P < 0.05), but correlated positively with caspase-3 mRNA expression (r = 0.926, P < 0.05). These data show that fraction FA-2-b-ß can induce HL-60 cell apoptosis and that the combined effect of down-regulation of telomerase activity and up-regulation of mRNA expression of the caspase-3 gene could be the primary mechanism of induction of apoptosis. These findings provide strong evidence that fraction FA-2-b-ß could be of interest for the clinical treatment of acute leukemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drak2 est un membre de la famille des protéines associées à la mort et c’est une sérine/thréonine kinase. Chez les souris mutantes nulles Drak2, les cellules T ne présentent aucune défectuosité apparente en apoptose induite par activation, après stimulation avec anti-CD3 et anti-CD28, mais ont un seuil de stimulation réduit, comparées aux cellules T de type sauvage (TS). Dans notre étude, l’analyse d’hybridation in situ a révélé que l’expression de Drak2 est ubiquiste au stade de la mi-gestation chez les embryons, suivie d’une expression plus focale dans les divers organes pendant la période périnatale et l’âge adulte, notamment dans le thymus, la rate, les ganglions lymphatiques, le cervelet, les noyaux suprachiasmatiques, la glande pituitaire, les lobes olfactifs, la médullaire surrénale, l’estomac, la peau et les testicules. Nous avons créé des souris transgéniques (Tg) Drak2 en utilisant le promoteur humain beta-actine. Ces souris Tg montraient des ratios normaux entre cellules T versus B et entre cellules CD4 versus CD8, mais leur cellularité et leur poids spléniques étaient inférieurs comparé aux souris de type sauvage. Après activation TCR, la réponse proliférative des cellules T Tg Drak2 était normale, même si leur production d’interleukine (IL)-2 et IL-4 mais non d’interféron-r était augmentée. Les cellules T Tg Drak2 activées ont démontré une apoptose significativement accrue en présence d’IL-2 exogène. Au niveau moléculaire, les cellules T Tg Drak2 ont manifesté une augmentation moins élevée des facteurs anti-apoptotiques durant l’activation; un tel changement a probablement rendu les cellules vulnérables aux attaques subséquentes d’IL-2. L’apoptose compromise dans les cellulesT Tg Drak2 a été associée à un nombre réduit de cellules T ayant le phénotype des cellules mémoires (CD62Llo) et avec des réactions secondaires réprimées des cellules T dans l’hypersensibilité de type différé. Ces résultats démontrent que Drak2 s’exprime dans le compartiment des cellules T mais n’est pas spécifique aux cellules T; et aussi qu’il joue des rôles déterminants dans l’apoptose des cellules T et dans le développement des cellules mémoires T. En outre, nous avons recherché le rôle de Drak2 dans la survie des cellules beta et le diabète. L’ARNm et la protéine Drak2 ont été rapidement induits dans les cellules beta de l’îlot après stimulation exogène par les cytokines inflammatoires ou les acides gras libres et qui est présente de façon endogène dans le diabète, qu’il soit de type 1 ou de type 2. La régulation positive de Drak2 a été accompagnée d’une apoptose accrue des cellules beta. L’apoptose des cellules beta provoquée par les stimuli en question a été inhibée par la chute de Drak2 en utilisant petit ARNi. Inversement, la surexpression de Drak2 Tg a mené à l’apoptose aggravée des cellules beta déclenchée par les stimuli. La surexpression de Drak2 dans les îlots a compromis l’augmentation des facteurs anti-apoptotiques, tels que Bcl-2, Bcl-xL et Flip, sur stimulation par la cytokine et les acides gras libres. De plus, les expériences in vivo ont démontré que les souris Tg Drak2 étaient sujettes au diabète de type 1 dans un modèle de diabète provoqué par de petites doses multiples de streptozotocine et qu’elles étaient aussi sujettes au diabète de type 2 dans un modèle d’obésité induite par la diète. Nos données montrent que Drak2 est défavorable à la survie des cellules beta. Nous avons aussi étudié la voie de transmission de Drak2. Nous avons trouvé que Drak2 purifiée pouvait phosphoryler p70S6 kinase dans une analyse kinase in vitro. Lasurexpression de Drak2 dans les cellules NIT-1 a entraîné l’augmentation de la phosphorylasation p70S6 kinase tandis que l’abaissement de Drak2 dans ces cellules a réduit la phosphorylation. Ces recherches mécanistes ont prouvé que p70S6 kinase était véritablement un substrat de Drak2 in vitro et in vivo. Cette étude a découvert les fonctions importantes de Drak2 dans l’homéostasie des cellules T et le diabète. Nous avons prouvé que p70S6 kinase était un substrat de Drak2. Nos résultats ont approfondi nos connaissances de Drak2 à l’intérieur des systèmes immunitaire et endocrinien. Certaines de nos conclusions, comme les rôles de Drak2 dans le développement des cellules mémoires T et la survie des cellules beta pourraient être explorées pour des applications cliniques dans les domaines de la transplantation et du diabète.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The possibility that bacteria may have evolved strategies to overcome host cell apoptosis was explored by using Rickettsia rickettsii, an obligate intracellular Gram-negative bacteria that is the etiologic agent of Rocky Mountain spotted fever. The vascular endothelial cell, the primary target cell during in vivo infection, exhibits no evidence of apoptosis during natural infection and is maintained for a sufficient time to allow replication and cell-to-cell spread prior to eventual death due to necrotic damage. Prior work in our laboratory demonstrated that R. rickettsii infection activates the transcription factor NF-κB and alters expression of several genes under its control. However, when R. rickettsii-induced activation of NF-κB was inhibited, apoptosis of infected but not uninfected endothelial cells rapidly ensued. In addition, human embryonic fibroblasts stably transfected with a superrepressor mutant inhibitory subunit IκB that rendered NF-κB inactivatable also underwent apoptosis when infected, whereas infected wild-type human embryonic fibroblasts survived. R. rickettsii, therefore, appeared to inhibit host cell apoptosis via a mechanism dependent on NF-κB activation. Apoptotic nuclear changes correlated with presence of intracellular organisms and thus this previously unrecognized proapoptotic signal, masked by concomitant NF-κB activation, likely required intracellular infection. Our studies demonstrate that a bacterial organism can exert an antiapoptotic effect, thus modulating the host cell’s apoptotic response to its own advantage by potentially allowing the host cell to remain as a site of infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arachidonic acid (AA) metabolites derived from both cyclooxygenase (COX) and lipoxygenase (LOX) pathways transduce a variety of signals related to cell growth. Here, we report that the AA LOX pathway also functions as a critical regulator of cell survival and apoptosis. Rat Walker 256 (W256) carcinosarcoma cells express 12-LOX and synthesize 12(S)- and 15(S)-hydroxyeicosatetraenoic acids as their major LOX metabolites. W256 cells transfected with 12-LOX-specific antisense oligonucleotide or antisense oligonucleotides directed to conserved regions of LOXs underwent time- and dose-dependent apoptosis. Likewise, treatment of W256 cells with various LOX but not COX inhibitors induced apoptotic cell death, which could be partially inhibited by exogenous 12(S)- or 15(S)-hydroxyeicosatetraenoic acids. The W256 cell apoptosis induced by antisense oligos and LOX inhibitors was followed by a rapid downregulation of bcl-2 protein, a dramatic decrease in the bcl-2/bax ratio, and could be suppressed by bcl-2 overexpression. In contrast, p53, which is wild type in W256 cells, did not undergo alterations during apoptosis induction. The results suggest that the LOX pathway plays an important physiological role in regulating apoptosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanism underlying castration-induced prostate regression, which is a classical physiological concept translated into the therapeutic treatment of advanced prostate cancer, involves epithelial cell apoptosis. In searching for events and mechanisms contributing to prostate regression in response to androgen modulation, we have frequently observed the collective deletion of epithelial cells. This work was undertaken to characterize this phenomenon hereafter named desquamation and to verify its presence after 17β-estradiol (E2) administration. Electron microscopy revealed that the desquamating cells had preserved cell-cell junctions and collapsed nuclear contents. The TUNEL reaction was negative for these cells, which were also negative for cleaved caspases-8, -9, -3 and nuclear apoptosis-inducing factor. Detailed analyses revealed that the condensed chromatin was first affected detaching from the nuclear lamina, which was observable after lamin A immunohistochemistry, suggesting the lack of lamin A degradation. A search in animals treated with supraphysiological E2 employed as an alternative anti-androgen treatment revealed no desquamation. The combined treatment (Cas + E2 group) caused changes particular to each treatment, including desquamation. In conclusion, desquamation appeared as a novel phenomenon contributing to collective prostate epithelial cell deletion, distinct from the classical castration-induced apoptosis and particular to the androgen deprivation resulting from surgical castration, and should be considered as part of the mechanisms promoting organ regression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We tested the hypothesis that bone marrow-derived mononuclear cells (BMDMCs) at an early phase of cecal ligation and puncture (CLP)-induced sepsis may have lasting effects on: (1) lung mechanics and histology, (2) the structural remodelling of lung parenchyma, (3) lung, kidney, and liver cell apoptosis, and (4) pro- and anti-inflammatory cytokines and growth factors. At day 1, BMDMC significantly reduced mortality, as well as caspase-3, interleukin (IL)-6 and IL-1 beta vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor-beta, but increased IL-10 mRNA expression in lung tissue in septic mice contributing to endothelium and epithelium alveolar repair and improvement of lung mechanics. BMDMC also prevented the increase of apoptotic cells in lung, liver, and kidney. At day 7, these early functional and morphological effects were preserved or further improved. In conclusion, in the present model of sepsis, the beneficial effects of early administration of BMDMCs on lung and distal organs were preserved, possibly by paracrine mechanisms. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of primary immunodeficiency diseases represent a paradox of immunodeficiency and autoimmunity. In this minireview, we present basic concepts of apoptosis and disorder of apoptosis as one of the mechanisms to explain such a paradox between immunodeficiency and autoimmunity, which is exemplified by autoimmune lympho-proliferative syndrome (ALPS).