996 resultados para brain gyrus
Resumo:
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.
Resumo:
In studies of prospective memory, recall of the content of delayed intentions is normally excellent, probably because they contain actions that have to be enacted at a later time. Action words encoded for later enactment are more accessible from memory than those encoded for later verbal report [Freeman, J.E., and Ellis, J.A. 2003a. The representation of delayed intentions: A prospective subject-performed task? Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 976-992.]. As this higher assessibility is lost when the intended actions have to be enacted during encoding, or when a motor interference task is introduced concurrent to intention encoding, Freeman and Ellis suggested that the advantage of to-be-enacted actions is due to additional preparatory motor operations during encoding. Accordingly, in a fMRI study with 10 healthy young participants, we investigated whether motor brain regions are differentially activated during verbal encoding of actions for later enactment with the right hand in contrast to verbal encoding of actions for later verbal report. We included an additional condition of verbal encoding of abstract verbs for later verbal report to investigate whether the semantic motor information inherent in action verbs in contrast to abstract verbs activates motor brain regions different from those involved in the verbal encoding of actions for later enactment. Differential activation for the verbal encoding of to-be-enacted actions in contrast to to-be-reported actions was found in brain regions known to be involved in covert motor preparation for hand movements, i.e. the postcentral gyrus, the precuneus, the dorsal and ventral premotor cortex, the posterior middle temporal gyrus and the inferior parietal lobule. There was no overlap between these brain regions and those differentially activated during the verbal encoding of actions in contrast to abstract verbs for later verbal report. Consequently, the results of this fMRI study suggest the presence of preparatory motor operations during the encoding of delayed intentions requiring a future motor response, which cannot be attributed to semantic information inherent to action verbs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Using functional magnetic resonance imaging, we found that when bilinguals named pictures or read words aloud, in their native or nonnative language, activation was higher relative to monolinguals in 5 left hemisphere regions: dorsal precentral gyrus, pars triangularis, pars opercularis, superior temporal gyrus, and planum temporale. We further demonstrate that these areas are sensitive to increasing demands on speech production in monolinguals. This suggests that the advantage of being bilingual comes at the expense of increased work in brain areas that support monolingual word processing. By comparing the effect of bilingualism across a range of tasks, we argue that activation is higher in bilinguals compared with monolinguals because word retrieval is more demanding; articulation of each word is less rehearsed; and speech output needs careful monitoring to avoid errors when competition for word selection occurs between, as well as within,language.
Resumo:
OBJECTIVE: This study modeled win and lose trials in a simple gambling task to examine the effect of entire win-lose situations (WIN, LOSS, or TIE) on single win/lose trials and related neural underpinnings. METHODS: The behavior responses and brain activities of 17 participants were recorded by an MRI scanner while they performed a gambling task. Different conditions were compared to determine the effect of the task on the behavior and brain activity of the participants. Correlations between brain activity and behavior were calculated to support the imaging results. RESULTS: In win trials, LOSS caused less intense posterior cingulate activity than TIE. In lose trials, LOSS caused more intense activity in the right superior temporal gyrus, bilateral superior frontal gyrus, bilateral anterior cingulate, bilateral insula cortex, and left orbitofrontal cortex than WIN and TIE. CONCLUSIONS: The experiences of the participants in win trials showed great similarity among different win-lose situations. However, the brain activity and behavior responses of the participants in lose trials indicated that they experienced stronger negative emotion in LOSS. The participants also showed an increased desire to win in LOSS than in WIN or TIE conditions.
Resumo:
The aim of this study was to analyze the plastic effects of moderate exercise upon the motor cortex (M1 and M2 areas), cerebellum (Cb), and striatum (CPu) of the rat brain This assessment was made by verifying the expression of AMPA type glutamate receptor subunits (GluR1 and GluR2/3) We used adult Wistar rats, divided into 5 groups based on duration of exercise training, namely 3 days (EX3), 7 days (EX7) 15 days (EX15) 30 days (EX30), and sedentary (S) The exercised animals were subjected to a treadmill exercise protocol at the speed of the 10 meters/min for 40 mm After exercise, the brains were subjected to immunohistochemistry and immunoblotting to analyze changes of GluR1 and GluR2/3, and plasma cortcosterone was measured by ELISA in order to verify potential stress induced by physical training Overall the results of immunohistochemistry and immunoblotting were similar and revealed that GluR subunits show distinct responses over the exercise periods and for the different structures analyzed In general, there was increased expression of GluR subunits after longer exercise periods (such as EX30) although some opposite effects were seen after short periods of exercise (Ex3) In a few cases biphasic patterns with decreases and subsequent increases of GluR expression were seen and may represent the outcome of exercise dependent, complex regulatory processes The data show that the protocol used was able to promote plastic GluR changes during exercise, suggesting a specific involvement of these receptors in exercise induced plasticity processes in the brain areas tested (C) 2010 Elsevier B V All rights reserved
Resumo:
Physical exercise is known to enhance brain function in several aspects. We evaluated the acute effects of a moderate forced exercise protocol on synaptic proteins, namely synapsin 1 (SYN) and synaptophysin (SYP), and structural proteins (neurofilaments, NFs) in rat brain regions related to motor function and often affected by neurodegenerative disorders. Immunohistochemistry, Western blotting and real-time PCR were used to analyze the expression of those proteins after 3, 7 and 15 days of exercise (EX3, EX7 and EX15). In the cerebellum, increase of SYN was observed at EX7 and EX15 and of NF68 at EX3. In the substantia nigra, increases of protein levels were observed for NF68 and NF160 at EX3. In the striatum, there was an increase of SYN at EX3 and EX7, of SYP at EX7 and of NF68 at EX3. In the cortex, decreased levels of NF68 and NF160 were observed at EX3, followed by an increase of NF68 at EX15. In the reticular formation, all NF proteins were increased at EX15. The mRNA data for each time-point and region also revealed significant exercise-related changes of SYN, SYP and NF expression. These results suggest that moderate physical exercise modulates synaptic and structural proteins in motor brain areas, which may play an important role in the exercise-dependent brain plasticity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The presence of cognitive impairment is a frequent complaint among elderly individuals in the general population. This study aimed to investigate the relationship between aging-related regional gray matter (rGM) volume changes and cognitive performance in healthy elderly adults. Morphometric magnetic resonance imaging (MRI) measures were acquired in a community-based sample of 170 cognitively-preserved subjects (66 to 75 years). This sample was drawn from the "Sao Paulo Ageing and Health" study, an epidemiological study aimed at investigating the prevalence and risk factors for Alzheimer's disease in a low income region of the city of Sao Paulo. All subjects underwent cognitive testing using a cross-culturally battery validated by the Research Group on Dementia 10/66 as well as the SKT (applied on the day of MRI scanning). Blood genotyping was performed to determine the frequency of the three apolipoprotein E allele variants (APOE epsilon 2/epsilon 3/epsilon 4) in the sample. Voxelwise linear correlation analyses between rGM volumes and cognitive test scores were performed using voxel-based morphometry, including chronological age as covariate. There were significant direct correlations between worse overall cognitive performance and rGM reductions in the right orbitofrontal cortex and parahippocampal gyrus, and also between verbal fluency scores and bilateral parahippocampal gyral volume (p < 0.05, familywise-error corrected for multiple comparisons using small volume correction). When analyses were repeated adding the presence of the APOE epsilon 4 allele as confounding covariate or excluding a minority of APOE epsilon 2 carriers, all findings retained significance. These results indicate that rGM volumes are relevant biomarkers of cognitive deficits in healthy aging individuals, most notably involving temporolimbic regions and the orbitofrontal cortex.
Resumo:
Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.
Resumo:
Neuroimaging studies suggest anterior-limbic structural brain abnormalities in patients with bipolar disorder (BD), but few studies have shown these abnormalities in unaffected but genetically liable family members. In this study, we report morphometric correlates of genetic risk for BD using voxel-based morphometry. In 35 BD type I (BD-I) patients, 20 unaffected first-degree relatives (UAR) of BD patients and 40 healthy control subjects underwent 3 T magnetic resonance scanner imaging. Preprocessing of images used DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry in SPM8 (Wellcome Department of Imaging Neuroscience, London, UK). The whole-brain analysis revealed that the gray matter (GM) volumes of the left anterior insula and right inferior frontal gyrus showed a significant main effect of diagnosis. Multiple comparison analysis showed that the BD-I patients and the UAR subjects had smaller left anterior insular GM volumes compared with the healthy subjects, the BD-I patients had smaller right inferior frontal gyrus compared with the healthy subjects. For white matter (WM) volumes, there was a significant main effect of diagnosis for medial frontal gyrus. The UAR subjects had smaller right medial frontal WM volumes compared with the healthy subjects. These findings suggest that morphometric brain abnormalities of the anterior-limbic neural substrate are associated with family history of BD, which may give insight into the pathophysiology of BD, and be a potential candidate as a morphological endophenotype of BD. Molecular Psychiatry (2012) 17, 412-420; doi: 10.1038/mp.2011.3; published online 15 February 2011
Resumo:
Introduction. Postnatal neurogenesis in the hippocampal dentate gyrus, can be modulated by numerous determinants, such as hormones, transmitters and stress. Among the factors positively interfering with neurogenesis, the complexity of the environment appears to play a particularly striking role. Adult mice reared in an enriched environment produce more neurons and exhibit better performance in hippocampus-specific learning tasks. While the effects of complex environments on hippocampal neurogenesis are well documented, there is a lack of information on the effects of living under socio-sensory deprivation conditions. Due to the immaturity of rats and mice at birth, studies dealing with the effects of environmental enrichment on hippocampal neurogenesis were carried out in adult animals, i.e. during a period of relatively low rate of neurogenesis. The impact of environment is likely to be more dramatic during the first postnatal weeks, because at this time granule cell production is remarkably higher than at later phases of development. The aim of the present research was to clarify whether and to what extent isolated or enriched rearing conditions affect hippocampal neurogenesis during the early postnatal period, a time window characterized by a high rate of precursor proliferation and to elucidate the mechanisms underlying these effects. The experimental model chosen for this research was the guinea pig, a precocious rodent, which, at 4-5 days of age can be independent from maternal care. Experimental design. Animals were assigned to a standard (control), an isolated, or an enriched environment a few days after birth (P5-P6). On P14-P17 animals received one daily bromodeoxyuridine (BrdU) injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. Methods. Brain sections were processed for BrdU immunhistochemistry, to quantify the new born and surviving cells. The phenotype of the surviving cells was examined by means of confocal microscopy and immunofluorescent double-labeling for BrdU and either a marker of neurons (NeuN) or a marker of astrocytes (GFAP). Apoptotic cell death was examined with the TUNEL method. Serial sections were processed for immunohistochemistry for i) vimentin, a marker of radial glial cells, ii) BDNF (brain-derived neurotrofic factor), a neurotrophin involved in neuron proliferation/survival, iii) PSA-NCAM (the polysialylated form of the neural cell adhesion molecule), a molecule associated with neuronal migration. Total granule cell number in the dentate gyrus was evaluated by stereological methods, in Nissl-stained sections. Results. Effects of isolation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of BDNF. Though in absolute terms P45 isolated animals had less surviving cells than controls, they showed no differences in survival rate and phenotype percent distribution compared to controls. Evaluation of the absolute number of surviving cells of each phenotype showed that isolated animals had a reduced number of cells with neuronal phenotype than controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that isolated animals had less granule cells than controls (-32% at P18 and -42% at P45). Effects of enrichment. In P18 enriched animals there was an increase in cell proliferation (+26%) compared to controls and a higher expression of BDNF. Though in both groups there was a decline in the number of BrdU-positive cells by P45, enriched animals had more surviving cells (+63) and a higher survival rate than controls. No differences were found between control and enriched animals in phenotype percent distribution. Evaluation of the absolute number of cells of each phenotype showed that enriched animals had a larger number of cells of each phenotype than controls. Looking at the location of cells of each phenotype we found that enriched animals had more new neurons in the granule cell layer and more astrocytes and cells with undetermined phenotype in the hilus. Enriched animals had a higher expression of PSA-NCAM in the granule cell layer and hilus Vimentin immunohistochemistry showed that in enriched animals radial glia cells were more numerous and had more processes.. Granule cell count revealed that enriched animals had more granule cells than controls (+37% at P18 and +31% at P45). Discussion. Results show that isolation rearing reduces hippocampal cell proliferation but does not affect cell survival, while enriched rearing increases both cell proliferation and cell survival. Changes in the expression of BDNF are likely to contribute to he effects of environment on precursor cell proliferation. The reduction and increase in final number of granule neurons in isolated and enriched animals, respectively, are attributable to the effects of environment on cell proliferation and survival and not to changes in the differentiation program. As radial glia cells play a pivotal role in neuron guidance to the granule cell layer, the reduced number of radial glia cells in isolated animals and the increased number in enriched animals suggests that the size of radial glia population may change dynamically, in order to match changes in neuron production. The high PSA-NCAM expression in enriched animals may concur to favor the survival of the new neurons by facilitating their migration to the granule cell layer. Conclusions. By using a precocious rodent we could demonstrate that isolated/enriched rearing conditions, at a time window during which intense granule cell proliferation takes place, lead to a notable decrease/increase of total granule cell number. The time-course and magnitude of postnatal granule cell production in guinea pigs are more similar to the human and non-human primate condition than in rats and mice. Translation of current data to humans would imply that exposure of children to environments poor/rich of stimuli may have a notably large impact on dentate neurogenesis and, very likely, on hippocampus dependent memory functions.
Resumo:
Rett's Syndrome (RTT) is a severe neurodevelopmental disorder, characterized by cognitive disability that appears in the first months/years of life. Recently, mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been detected in RTT patients characterized by early-onset seizures. CDKL5 is highly expressed in the brain starting from early postnatal stages to adulthood, suggesting the importance of this kinase for proper brain maturation and function. However, the role/s of CDKL5 in brain development and the molecular mechanisms whereby CDKL5 exerts its effects are still largely unknown. In order to characterize the role of CDKL5 on brain development, we created a mice carrying a targeted conditional knockout allele of Cdkl5. A first behavioral characterization shows that Cdkl5 knockout mice recapitulate several features that mimic the clinical features described in CDKL5 patients and are a useful tool to investigate phenotypic and functional aspects of Cdkl5 loss. We used the Cdkl5 knockout mouse model to dissect the role of CDKL5 on hippocampal development and to establish the mechanism/s underlying its actions. We found that Cdkl5 knockout mice showed increased precursor cell proliferation in the hippocampal dentate gyrus. Interestingly, this region was also characterized by an increased rate of apoptotic cell death that caused a reduction in the final neuron number in spite of the proliferation increase. Moreover, loss of Cdkl5 led to decreased dendritic development of new generated granule cells. Finally, we identified the Akt/GSK3-beta signaling as a target of Cdkl5 in the regulation of neuronal precursor proliferation, survival and maturation. Overall our findings highlight a critical role of CDKL5/AKT/GSK3-beta signaling in the control of neuron proliferation, survival and differentiation and suggest that CDKL5-related alterations of these processes during brain development underlie the neurological symptoms of the CDKL5 variant of RTT.
Resumo:
Clinical and experimental evidence indicates that inflammatory processes contribute to the pathophysiology of epilepsy, but underlying mechanisms remain mostly unknown. Using immunohistochemistry for CD45 (common leukocyte antigen) and CD3 (T-lymphocytes), we show here microglial activation and infiltration of leukocytes in sclerotic tissue from patients with mesial temporal lobe epilepsy (TLE), as well as in a model of TLE (intrahippocampal kainic acid injection), characterized by spontaneous, nonconvulsive focal seizures. Using specific markers of lymphocytes, microglia, macrophages, and neutrophils in kainate-treated mice, we investigated with pharmacological and genetic approaches the contribution of innate and adaptive immunity to kainate-induced inflammation and neurodegeneration. Furthermore, we used EEG analysis in mutant mice lacking specific subsets of lymphocytes to explore the significance of inflammatory processes for epileptogenesis. Blood-brain barrier disruption and neurodegeneration in the kainate-lesioned hippocampus were accompanied by sustained ICAM-1 upregulation, microglial cell activation, and infiltration of CD3(+) T-cells. Moreover, macrophage infiltration was observed, selectively in the dentate gyrus where prominent granule cell dispersion was evident. Unexpectedly, depletion of peripheral macrophages by systemic clodronate liposome administration affected granule cell survival. Neurodegeneration was aggravated in kainate-lesioned mice lacking T- and B-cells (RAG1-knock-out), because of delayed invasion by Gr-1(+) neutrophils. Most strikingly, these mutant mice exhibited early onset of spontaneous recurrent seizures, suggesting a strong impact of immune-mediated responses on network excitability. Together, the concerted action of adaptive and innate immunity triggered locally by intrahippocampal kainate injection contributes seizure-suppressant and neuroprotective effects, shedding new light on neuroimmune interactions in temporal lobe epilepsy.
Resumo:
Evidence suggests that the social cognition deficits prevalent in autism spectrum disorders (ASDs) are widely distributed in first degree and extended relatives. This ¿broader autism phenotype¿ (BAP) can be extended into non-clinical populations and show wide distributions of social behaviors such as empathy and social responsiveness ¿ with ASDs exhibiting these behaviors on the lower ends of the distributions. Little evidence has previously shown relationships between self-report measures of social cognition and more objective tasks such as face perception in functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). In this study, three specific hypotheses were addressed: a) increased social ability, as measured by an increased Empathy Quotient, decreased Social Responsiveness Scale (SRS-A) score, and increased Social Attribution Task score, will predict increased activation of the fusiform gyrus in response to faces as compared to houses; b) these same measures will predict N170 amplitude and latency showing decreased latency and increased amplitude for faces as compared to houses with increased social ability; c) increased amygdala volume will predict increased fusiform gyrus activation when viewing faces as compared to houses. Findings supported all of the hypotheses. Empathy scores significantly predicted both right FFG activation [F(1,20) = 4.811, p = .041, ß = .450, R2 = 0.20] and left FFG activation [F(1,20) = 7.70, p = .012, ß = .537, R2 = 0.29]. Based on ERP results increased right lateralization face-related N170 was significantly predicted by the EQ [F(1,54) = 6.94, p = .011, ß = .338, R2 = 0.11]. Finally, total amygdala volume significantly predicted right [F(1,20) = 7.217, p = .014, ß = .515, R2 = 0.27] and left [F(1,20) = 36.77, p < .001, ß = .805, R2 = 0.65] FFG activation. Consistent with the a priori hypotheses, traits attributed to the BAP can significantly predict neural responses to faces in a non-clinical population. This is consistent with the face processing deficits seen in ASDs. The findings presented here contribute to the extension of the BAP from unaffected relatives of individuals with ASDs to the general population. These findings also give continued evidence in support of a continuous distribution of traits found in psychiatric illnesses in place of a traditional, dichotomous ¿all-or-nothing¿ diagnostic framework of neurodevelopmental and neuropsychiatric disorders.
Resumo:
The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.
Resumo:
Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.