988 resultados para biophotons, squeezed light, nonclassical states


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The (He3, n) reactions on B11, N15, O16, and O18 targets have been studied using a pulsed-beam time-of-flight spectrometer. Special emphasis was placed upon the determination of the excitation energies and properties of states with T = 1 (in Ne18), T = 3/2 (in N13 and F17) and T = 2 (in Ne20). The identification of the T = 3/2 and T = 2 levels is based on the structure of these states as revealed by intensities and shapes of angular distributions. The reactions are interpreted in terms of double stripping theory. Angular distributions have been compared with plane and distorted wave stripping theories. Results for the four reactions are summarized below:

1) O16 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV and two previously unreported levels in Ne18 were observed at Ex = 4.55 ± .015 MeV (Γ = 70 ± 30 keV) and Ex = 5.14 ± .018 MeV (Γ = 100 ± 40 keV).

2) B11 (He3, n). The reaction has been studied at incident energies up to 13.5 MeV. Three T = 3/2 levels in N13 have been identified at Ex = 15.068 ± .008 MeV (Γ ˂ 15 keV), Ex = 18.44 ± .04, and Ex 18.98 ± .02 MeV (Γ = 40 ± 20 keV).

3) N15 (He3, n). The reaction has been studied at incident energies up to 11.88 MeV. T = 3/2 levels in F17 have been identified at Ex = 11.195 ± .007 MeV (Γ ˂ 20 keV), Ex = 12.540 ± .010 MeV (Γ ˂ 25 keV), and Ex = 13.095 ± .009 MeV (Γ ˂ 25 keV).

4) O18 (He3, n). The reaction has been studied at incident energies up to 9.0 MeV. The excitation energy of the lowest T = 2 level in Ne20 has been found to be 16.730 ± .006 MeV (Γ ˂ 20 keV).

Angular distributions of the transitions leading to the above higher isospin states are well described by double stripping theory. Analog correspondences are established by comparing the present results with recent studies (t, p) and (He3, p) reactions on the same targets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The light-front quark model has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the light-front quark model given in the literature, the theoretically determined decay constants of the Gamma(nS) obviously contradict the data. This implies that the wave functions must be modified. Keeping the orthogonality among the nS states and fitting their decay constants, we obtain a series of the wave functions for Gamma(nS). Based on these wave functions and by analogy with the hydrogen atom, we suggest a modified analytical form for the Gamma(nS) wave functions. Using the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of Gamma(nS) -> eta(b) + gamma. Our predictions are consistent with the experimental data on decays Gamma(3S) -> eta(b) + gamma within the theoretical and experimental errors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum teleportation for continuous variables is generally described in phase space by using the Wigner functions. We study quantum teleportation via a mixed two-mode squeezed state in Hilbert-Schmidt space by using the coherent-state representation and operators. This shows directly how the teleported state is related to the original state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study a continuous-variable entangled state composed of two states which are squeezed in two opposite quadratures in phase space. Various entanglement conditions are tested for the entangled squeezed state and we study decoherence models for noise, producing a mixed entangled squeezed state. We briefly describe a probabilistic protocol for entanglement swapping based on the use of this class of entangled states and the main features of a general generation scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analytical treatment of optical transmission through periodically nanosructured metal films capable of supporting surface-plasmon polaritons is presented. The optical properties of such metal films are governed by surface polariton behavior in a periodic surface structure forming a surface polaritonic crystal. Due to different configurations of the electromagnetic field of surface polariton modes, only states of even Brillouin zones are responsible for the optical transmission enhancement at normal incidence. The transmission enhancement is related to photon tunneling via resonant states of surface polariton Bloch modes in which the energy buildup takes place. Surface polariton states of at least one of the film interfaces contribute to the transmission resonance which occurs due to tunnel coupling between photons and surface polaritons on the opposite interfaces. Under double-resonance conditions, resonant tunneling between surface polariton states of both interfaces is achieved, which leads to further enhancement of the transmission efficiency. The double-resonance conditions occur not only in the case of a film in symmetric environment but can also be engineered for a film on a substrate. Light tunneling via surface polariton states can take place directly through a structured metal film and does not necessarily require holes in a film.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss the generation of states close to the boundary family of maximally entangled mixed states as defined by the use of concurrence and linear entropy. The coupling of two qubits to a dissipation-affected bosonic mode is able to produce a bipartite state having, for all practical purposes, the entanglement and mixedness properties of one of such boundary states. We thoroughly study the effects that thermal and squeezed characters of the bosonic mode have in such a process and we discuss tolerance to qubit phase-damping mechanisms. The nondemanding nature of the scheme makes it realizable in a matter-light-based physical setup, which we address in some details.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantum discord quantifies nonclassical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whole Hilbert space: typically a state picked out at random has positive discord and, given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These results hold for any Hilbert-space dimension and have direct implications for quantum computation and for the foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot lead to a sudden, permanent vanishing of discord.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.