957 resultados para best linear unbiased predictor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to assess families and highlight the superior progenies of sugarcane originating from 38 biparental crosses for the following attributes: tons of cane per hectare (TCH), tons of biomass per hectare (TBIOH), brix (% cane juice), fiber content, purity, pol and total recoverable sugar (TRS). The data were analyzed by mixed model REML / BLUP in the REML (Restricted Maximum Likelihood) allowed us to estimate genetic parameters and BLUP (best linear unbiased prediction) to predict the additive and genotypic values. The best family for the attributes TCH and TBIOH was 41, whose parents are cultivars IACSP022019 x CTC9. In individual selection for TCH, the plant number 3 of Block 2, the crossing 78, showed the best results. To TBIOH the plant number 33, Block 1, family 41, showed the best results. Families 40, 41, 43, 68, 69, 79, 91, 92 and 147, were higher for the variables brix, pol, purity, and ATR, where as 85 families, 147, 148, 149, 161, 163, 177, 178, 179, and 183 were higher for fiber. The family 147 whose parents are IACSP042286 x IACSP963055, showed three progenies ranked among the top ten for both brix, and for fiber, which identifies the combination as a potential source of progenies for bioenergy production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical sampling methods can be used to estimate the mean of a finite or infinite population. Block kriging also estimates the mean, but of an infinite population in a continuous spatial domain. In this paper, I consider a finite population version of block kriging (FPBK) for plot-based sampling. The data are assumed to come from a spatial stochastic process. Minimizing mean-squared-prediction errors yields best linear unbiased predictions that are a finite population version of block kriging. FPBK has versions comparable to simple random sampling and stratified sampling, and includes the general linear model. This method has been tested for several years for moose surveys in Alaska, and an example is given where results are compared to stratified random sampling. In general, assuming a spatial model gives three main advantages over classical sampling: (1) FPBK is usually more precise than simple or stratified random sampling, (2) FPBK allows small area estimation, and (3) FPBK allows nonrandom sampling designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Validity of comparisons between expected breeding values obtained from best linear unbiased prediction procedures in genetic evaluations is dependent on genetic connectedness among herds. Different cattle breeding programmes have their own particular features that distinguish their database structure and can affect connectedness. Thus, the evolution of these programmes can also alter the connectedness measures. This study analysed the evolution of the genetic connectedness measures among Brazilian Nelore cattle herds from 1999 to 2008, using the French Criterion of Admission to the group of Connected Herds (CACO) method, based on coefficients of determination (CD) of contrasts. Genetic connectedness levels were analysed by using simple and multiple regression analyses on herd descriptors to understand their relationship and their temporal trends from the 19992003 to the 20042008 period. The results showed a high level of genetic connectedness, with CACO estimates higher than 0.4 for the majority of them. Evaluation of the last 5-year period showed only a small increase in average CACO measures compared with the first 5 years, from 0.77 to 0.80. The percentage of herds with CACO estimates lower than 0.7 decreased from 27.5% in the first period to 16.2% in the last one. The connectedness measures were correlated with percentage of progeny from connecting sires, and the artificial insemination spread among Brazilian herds in recent years. But changes in connectedness levels were shown to be more complex, and their complete explanation cannot consider only herd descriptors. They involve more comprehensive changes in the relationship matrix, which can be only fully expressed by the CD of contrasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Franches-Montagnes is an indigenous Swiss horse breed, with approximately 2500 foalings per year. The stud book is closed, and no introgression from other horse breeds was conducted since 1998. Since 2006, breeding values for 43 different traits (conformation, performance and coat colour) are estimated with a best linear unbiased prediction (BLUP) multiple trait animal model. In this study, we evaluated the genetic diversity for the breeding population, considering the years from 2003 to 2008. Only horses with at least one progeny during that time span were included. Results were obtained based on pedigree information as well as from molecular markers. A series of software packages were screened to combine best the best linear unbiased prediction (BLUP) methodology with optimal genetic contribution theory. We looked for stallions with highest breeding values and lowest average relationship to the dam population. Breeding with such stallions is expected to lead to a selection gain, while lowering the future increase in inbreeding within the breed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kriging is a widely employed method for interpolating and estimating elevations from digital elevation data. Its place of prominence is due to its elegant theoretical foundation and its convenient practical implementation. From an interpolation point of view, kriging is equivalent to a thin-plate spline and is one species among the many in the genus of weighted inverse distance methods, albeit with attractive properties. However, from a statistical point of view, kriging is a best linear unbiased estimator and, consequently, has a place of distinction among all spatial estimators because any other linear estimator that performs as well as kriging (in the least squares sense) must be equivalent to kriging, assuming that the parameters of the semivariogram are known. Therefore, kriging is often held to be the gold standard of digital terrain model elevation estimation. However, I prove that, when used with local support, kriging creates discontinuous digital terrain models, which is to say, surfaces with “rips” and “tears” throughout them. This result is general; it is true for ordinary kriging, kriging with a trend, and other forms. A U.S. Geological Survey (USGS) digital elevation model was analyzed to characterize the distribution of the discontinuities. I show that the magnitude of the discontinuity does not depend on surface gradient but is strongly dependent on the size of the kriging neighborhood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low temperature is one of the main environmental constraints for rice ( Oryza sativa L.) grain production yield. It is known that multi-environment studies play a critical role in the sustainability of rice production across diverse environments. However, there are few studies based on multi-environment studies of rice in temperate climates. The aim was to study the performance of rice plants in cold environments. Four experimental lines and six cultivars were evaluated at three locations during three seasons. The grain yield data were analyzed with ANOVA, mixed models based on the best linear unbiased predictors (BLUPs), and genotype plus Genotype × Environment interaction (GGE) biplot. High genotype contribution (> 25%) was observed in grain yield and the interaction between genotype and locations was not very important. Results also showed that ‘Quila 241319’ was the best experimental line with the highest grain yield (11.3 t ha-1) and grain yield stability across the environments; commercial cultivars were classified as medium grain yield genotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Intensified selection of polled individuals has recently gained importance in predominantly horned dairy cattle breeds as an alternative to routine dehorning. The status quo of the current polled breeding pool of genetically-closely related artificial insemination sires with lower breeding values for performance traits raises questions regarding the effects of intensified selection based on this founder pool. Methods: We developed a stochastic simulation framework that combines the stochastic simulation software QMSim and a self-designed R program named QUALsim that acts as an external extension. Two traits were simulated in a dairy cattle population for 25 generations: one quantitative (QMSim) and one qualitative trait with Mendelian inheritance (i.e. polledness, QUALsim). The assignment scheme for qualitative trait genotypes initiated realistic initial breeding situations regarding allele frequencies, true breeding values for the quantitative trait and genetic relatedness. Intensified selection for polled cattle was achieved using an approach that weights estimated breeding values in the animal best linear unbiased prediction model for the quantitative trait depending on genotypes or phenotypes for the polled trait with a user-defined weighting factor. Results: Selection response for the polled trait was highest in the selection scheme based on genotypes. Selection based on phenotypes led to significantly lower allele frequencies for polled. The male selection path played a significantly greater role for a fast dissemination of polled alleles compared to female selection strategies. Fixation of the polled allele implies selection based on polled genotypes among males. In comparison to a base breeding scenario that does not take polledness into account, intensive selection for polled substantially reduced genetic gain for this quantitative trait after 25 generations. Reducing selection intensity for polled males while maintaining strong selection intensity among females, simultaneously decreased losses in genetic gain and achieved a final allele frequency of 0.93 for polled. Conclusions: A fast transition to a completely polled population through intensified selection for polled was in contradiction to the preservation of high genetic gain for the quantitative trait. Selection on male polled genotypes with moderate weighting, and selection on female polled phenotypes with high weighting, could be a suitable compromise regarding all important breeding aspects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate genetic parameters to support the selection of bacuri progenies for a first cycle of recurrent selection, using the REML/BLUP (restricted maximum likelihood/best linear unbiased prediction) procedure to estimate the variance components and genotypic values. Were evaluated twelve variables in a total of 210 fruits from 39 different seed trees, from a field trial with an experimental design of incomplete blocks with clonal replies among subplots. The three variables related with the fruit development (weight, diameter, length) showed strong correlation, and where fruit length showed higher heritability and potential to be used for indirect selection. Among the 39 progenies evaluated in this study, five present potential to compose the next cycle of recurrent selection, due they hold good selection differential either to agrotechnological variables as to development of bacuri fruit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyse two variants of SIMON family of light-weight block ciphers against variants of linear cryptanalysis and present the best linear cryptanalytic results on these variants of reduced-round SIMON to date. We propose a time-memory trade-off method that finds differential/linear trails for any permutation allowing low Hamming weight differential/linear trails. Our method combines low Hamming weight trails found by the correlation matrix representing the target permutation with heavy Hamming weight trails found using a Mixed Integer Programming model representing the target differential/linear trail. Our method enables us to find a 17-round linear approximation for SIMON-48 which is the best current linear approximation for SIMON-48. Using only the correlation matrix method, we are able to find a 14-round linear approximation for SIMON-32 which is also the current best linear approximation for SIMON-32. The presented linear approximations allow us to mount a 23-round key recovery attack on SIMON-32 and a 24-round Key recovery attack on SIMON-48/96 which are the current best results on SIMON-32 and SIMON-48. In addition we have an attack on 24 rounds of SIMON-32 with marginal complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The setting considered in this paper is one of distributed function computation. More specifically, there is a collection of N sources possessing correlated information and a destination that would like to acquire a specific linear combination of the N sources. We address both the case when the common alphabet of the sources is a finite field and the case when it is a finite, commutative principal ideal ring with identity. The goal is to minimize the total amount of information needed to be transmitted by the N sources while enabling reliable recovery at the destination of the linear combination sought. One means of achieving this goal is for each of the sources to compress all the information it possesses and transmit this to the receiver. The Slepian-Wolf theorem of information theory governs the minimum rate at which each source must transmit while enabling all data to be reliably recovered at the receiver. However, recovering all the data at the destination is often wasteful of resources since the destination is only interested in computing a specific linear combination. An alternative explored here is one in which each source is compressed using a common linear mapping and then transmitted to the destination which then proceeds to use linearity to directly recover the needed linear combination. The article is part review and presents in part, new results. The portion of the paper that deals with finite fields is previously known material, while that dealing with rings is mostly new.Attempting to find the best linear map that will enable function computation forces us to consider the linear compression of source. While in the finite field case, it is known that a source can be linearly compressed down to its entropy, it turns out that the same does not hold in the case of rings. An explanation for this curious interplay between algebra and information theory is also provided in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil porosity influences plant development since root growth and crop yield are determined by the root depth. The objective of this study was to investigate the linear and spatial variability and correlations between common bean yield and soil porosity. The bean grain yield of the irrigated cultivar Carioca IAC was analyzed in the growing season 2004/2005, in Selviria-MS, as well as macroporosity (MA), microporosity (MI) and total porosity (TP), in a Dystroferric Red Latosol, at four depths: 1 (0.0-0.10 m), 2 (0.10-0.20 M), 3 (0.20-0.30 m) and 4 (0.30-0.40 m). Soil and plant data were collected in a geostatistical grid with 135 points spaced 10 m apart, covering an area of 50 x 150 m. The data of the studied attributes did not vary randomly and the values were intermediate to low. They followed well-defined spatial standards, reaching between 11.70-104.40 m. on the other hand, the linear correlation between the plant and soil attributes was low, due to the high number of observations. Grain yield had the best linear correlations with MA1b, MI1 and TP3. From the spatial point of view, the inverse correlation between PG and #TP2 was outstanding. At the sites where #TP2 diminished (0.030-0.045 m(3) m(-3)) the yield varied from 2,173 to 3,529 kg ha(-1) and where it increased (0.045-0.076 m(3) m(-3)), the yield was between 1,630 and 2,173 kg ha(-1). Therefore, the total soil porosity, evaluated in the 0.10-0.20 m layer (#TP2), indicated the importance of the contact root/soil and was in turn a satisfactory indicator of soil physical quality, with a view to the grain yield of irrigated common bean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soybean is the crop most cultivated in Brazil, with great socioeconomic importance. In the agriculture year 2008/09 in Selviria County, Mato Grosso do Sul State, in the Brazilian Savannah, was analyzed the production components and the soybean yield cultivated in a Typic Acrustox on no-tillage. The main purpose objective was select among the production components number of pods per plant, number of grains per pod, number of grains per plant, mass of a thousand grains, mass of grains per plant and population of plants, which of the best linear and spatial correlation aiming explain the soybean yield variability. The irregular geostatistical grid was installed to collect of data, with 120 sampling points, in an area of 8.34 ha. The values of spatial dependence range to be utilized should be among 38.1 and 114.7 meters. The model of the adjusted semivariograma was predominantly the spherical. of the lineal and spatial point of view, the number of pods per plant and the mass of grains per plant they were correlated in a direct way with the soybean yield, demonstrating be the best components to esteem her.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this study is to assess the relationship between six bioclimatic indices for cattle (temperature humidity (THI), environmental stress (ESI), equivalent temperature (ESI), heat load (HLI), modified heat load (HLInew) and respiratory rate predictor(RRP)) and fundamental milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when cows use natural pasture, with possibility for cows to choose to stay in the barn or to graze on the pasture in the pasturing system. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty estimation through resampling in the confidence intervals. To find the relationships between climate indices (THI, ETI, HLI, HLInew, ESI and RRP) and main components of cow milk (fat, protein and yield), multiple liner regression is applied. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Cross validation is used to avoid over-fitting. Based on results of investigation the effect of heat stress indices on milk compounds separately, we suggest the use of ESI and RRP in the summer and ESI in the spring. THI and HLInew are suggested for fat content and HLInew also is suggested for protein content in the spring season. The best linear models are found in spring between milk yield as predictands and THI, ESI,HLI, ETI and RRP as predictors with p-value < 0.001 and R2 0.50, 0.49. In summer, milk yield with independent variables of THI, ETI and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. It is strongly suggested that new and significant indices are needed to control critical heat stress conditions that consider more predictors of the effect of climate variability on animal products, such as sunshine duration, quality of pasture, the number of days of stress (NDS), the color of skin with attention to large black spots, and categorical predictors such as breed, welfare facility, and management system. This methodology is suggested for studies investigating the impacts of climate variability/change on food quality/security, animal science and agriculture using short term data considering uncertainty or data collection is expensive, difficult, or data with gaps.