977 resultados para baroclinic instability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Idealized ocean models are known to develop intrinsic multidecadal oscillations of the meridional overturning circulation (MOC). Here we explore the role of ocean–atmosphere interactions on this low-frequency variability. We use a coupled ocean–atmosphere model set up in a flat-bottom aquaplanet geometry with two meridional boundaries. The model is run at three different horizontal resolutions (4°, 2° and 1°) in both the ocean and atmosphere. At all resolutions, the MOC exhibits spontaneous variability on multidecadal timescales in the range 30–40 years, associated with the propagation of large-scale baroclinic Rossby waves across the Atlantic-like basin. The unstable region of growth of these waves through the long wave limit of baroclinic instability shifts from the eastern boundary at coarse resolution to the western boundary at higher resolution. Increasing the horizontal resolution enhances both intrinsic atmospheric variability and ocean–atmosphere interactions. In particular, the simulated atmospheric annular mode becomes significantly correlated to the MOC variability at 1° resolution. An ocean-only simulation conducted for this specific case underscores the disruptive but not essential influence of air–sea interactions on the low-frequency variability. This study demonstrates that an atmospheric annular mode leading MOC changes by about 2 years (as found at 1° resolution) does not imply that the low-frequency variability originates from air–sea interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An energy analysis of the Fine Resolution Antarctic Model (FRAM) reveals the instability processes in the model. The main source of time-mean kinetic energy is the wind stress and the main sink is transfer to mean potential energy. The wind forcing thus helps maintain the density structure. Transient motions result from internal instabilities of the Bow rather than seasonal variations of the forcing. Baroclinic instability is found to be an important mechanism in FRAM. The highest values of available potential energy are found in the western boundary regions as well as in the Antarctic Circumpolar Current (ACC) region. All subregions with predominantly zonal flow are found to be baroclinically unstable. The observed deficit of eddy kinetic energy in FRAM occurs as a result of the high lateral friction, which decreases the growth rates of the most unstable waves. This high friction is required for the numerical stability of the model and can only be made smaller by using a finer horizontal resolution. A grid spacing of at least 10-15 km would be required to resolve the most unstable waves in the southern part of the domain. Barotropic instability is also found to be important for the total domain balance. The inverse transfer (that is, transfer from eddy to mean kinetic energy) does not occur anywhere, except in very localized tight jets in the ACC. The open boundary condition at the northern edge of the model domain does not represent a significant source or sink of eddy variability. However, a large exchange between internal and external mode energies is found to occur. It is still unclear how these boundary conditions affect the dynamics of adjacent regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Eady model, where the meridional potential vorticity (PV) gradient is zero, perturbation energy growth can be partitioned cleanly into three mechanisms: (i) shear instability, (ii) resonance, and (iii) the Orr mechanism. Shear instability involves two-way interaction between Rossby edge waves on the ground and lid, resonance occurs as interior PV anomalies excite the edge waves, and the Orr mechanism involves only interior PV anomalies. These mechanisms have distinct implications for the structural and temporal linear evolution of perturbations. Here, a new framework is developed in which the same mechanisms can be distinguished for growth on basic states with nonzero interior PV gradients. It is further shown that the evolution from quite general initial conditions can be accurately described (peak error in perturbation total energy typically less than 10%) by a reduced system that involves only three Rossby wave components. Two of these are counterpropagating Rossby waves—that is, generalizations of the Rossby edge waves when the interior PV gradient is nonzero—whereas the other component depends on the structure of the initial condition and its PV is advected passively with the shear flow. In the cases considered, the three-component model outperforms approximate solutions based on truncating a modal or singular vector basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical framework is developed for the evolution of baroclinic waves with latent heat release parameterized in terms of vertical velocity. Both wave–conditional instability of the second kind (CISK) and large-scale rain approaches are included. The new quasigeostrophic framework covers evolution from general initial conditions on zonal flows with vertical shear, planetary vorticity gradient, a lower boundary, and a tropopause. The formulation is given completely in terms of potential vorticity, enabling the partition of perturbations into Rossby wave components, just as for the dry problem. Both modal and nonmodal development can be understood to a good approximation in terms of propagation and interaction between these components alone. The key change with moisture is that growing normal modes are described in terms of four counterpropagating Rossby wave (CRW) components rather than two. Moist CRWs exist above and below the maximum in latent heating, in addition to the upper- and lower-level CRWs of dry theory. Four classifications of baroclinic development are defined by quantifying the strength of interaction between the four components and identifying the dominant pairs, which range from essentially dry instability to instability in the limit of strong heating far from boundaries, with type-C cyclogenesis and diabatic Rossby waves being intermediate types. General initial conditions must also include passively advected residual PV, as in the dry problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear symmetric stability theorem is derived in the context of the f-plane Boussinesq equations, recovering an earlier result of Xu within a more general framework. The theorem applies to symmetric disturbances to a baroclinic basic flow, the disturbances having arbitrary structure and magnitude. The criteria for nonlinear stability are virtually identical to those for linear stability. As in Xu, the nonlinear stability theorem can be used to obtain rigorous upper bounds on the saturation amplitude of symmetric instabilities. In a simple example, the bounds are found to compare favorably with heuristic parcel-based estimates in both the hydrostatic and non-hydrostatic limits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questo studio, un modello nidificato "child" ad alta risoluzione (risoluzione 1/48°) è ottenuto attraverso la piattaforma SURF. Il modello "child" è ottenuto tramite "downscaling" dei campi medi giornalieri dal modello globale "parent" (1/12°). Questo permette di osservare le caratteristiche della sottomesoscala in due regioni dell'oceano Atlantico settentrionale, Azzorre e Bermuda, dal 4 al 12 gennaio 2021. Questa tesi si propone di condurre un'analisi preliminare della relazione fra il raggio di deformazione baroclino e l'esordio dell'attività di sottomesoscala, nelle regioni di interesse. A questo scopo, vengono effettuati molti confronti fra i campi risultanti dal "parent" e dal "child". In particolare, ci concentriamo sulla Mixed-Layer Instability (MLI) studiata attraverso variabili come la Mixed-Layer Depth (MLD), la vorticità relativa, le velocità orizzontali e verticali, l'energia cinetica e la frequenza di Brunt-Vaisala. Dai risultati, mentre il modello "parent" sembra inadeguato, quello "child" è in grado di rilevare la MLI e la presenza di filamenti e scie topografiche in entrambe le regioni, riproducendo meglio le correnti orizzontali e verticali alla sottomesoscala. Ciò fornisce una connessione tra mesoscala e sottomesoscala: mentre nelle Azzorre la MLI sembra svolgere un ruolo chiave nella ristratificazione della colonna d'acqua, lo stesso non sembra nelle Bermuda dove i vortici di mesoscala sono più ampi, influendo maggiormente sulla stratificazione verticale. Qui, i processi di ristratificazione sembrerebbero correlati alle mesoscale piuttosto che alle sottomesoscale. La MLI giocherebbe comunque un ruolo nella generazione di correnti alla sottomesoscala, insieme ad altri processi come la frontogenesi e le scie topografiche. In conclusione, il valore del raggio di deformazione baroclino non sembra influenzare l'attivazione dei processi di sottomesoscala, mentre sembrerebbe determinare l'importanza della MLI nel processo di ristratificazione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new criterion has been recently proposed combining the topological instability (lambda criterion) and the average electronegativity difference (Delta e) among the elements of an alloy to predict and select new glass-forming compositions. In the present work, this criterion (lambda.Delta e) is applied to the Al-Ni-La and Al-Ni-Gd ternary systems and its predictability is validated using literature data for both systems and additionally, using own experimental data for the Al-La-Ni system. The compositions with a high lambda.Delta e value found in each ternary system exhibit a very good correlation with the glass-forming ability of different alloys as indicated by their supercooled liquid regions (Delta T(x)) and their critical casting thicknesses. In the case of the Al-La-Ni system, the alloy with the largest lambda.Delta e value, La(56)Al(26.5)Ni(17.5), exhibits the highest glass-forming ability verified for this system. Therefore, the combined lambda.Delta e criterion is a simple and efficient tool to select new glass-forming compositions in Al-Ni-RE systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563099]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring chromosomes are often associated with abnormal phenotypes due to loss of genomic material and also because of ring instability at mitosis after sister chromatid exchange events. We investigated ring chromosome instability in six patients with ring chromosomes 4, 14, 15, and 18 by examining 48- and 72-h lymphocyte cultures at the first, second and subsequent cell divisions after bromodeoxyuridine incorporation. Although most cells from all patients showed only one monocentric ring chromosome, ring chromosome loss and secondary aberrations were observed both in 48-and 72-h lymphocyte cultures and in metaphase cells of the different cell generations. We found no clear-cut correlation between ring size and ring instability; we also did not find differences between apparently complete rings and rings with genetic material loss. The cytogenetic findings revealed secondary aberrations in all ring chromosome patients. We concluded that cells with ring chromosome instability can multiply and survive in vivo, and that they can influence the patient's phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary anticancer therapies have largely improved the outcome for children with cancer, especially for Acute Lymphoblastic Leukemia (ALL). Actually, between 78% and 85% of patients achieve complete remission and are alive after 5 years of therapy completion. However, as cure rates increase, new concerns about the late effects of genotoxic treatment emerge, being the risk of developing secondary neoplasias, the most serious life-threatening rising problem. In the present paper, we describe and review the cytogenetic findings in peripheral lymphocytes from ALL survivors, and discuss aspects associated to the occurrence of increased chromosome rearrangements in this growing cohort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitation of magnetorotational instability (MRI) in rotating laboratory plasmas is investigated. In contrast to astrophysical plasmas, in which gravitation plays an important role, in laboratory plasmas it can be neglected and the plasma rotation is equilibrated by the pressure gradient. The analysis is restricted to the simple model of a magnetic confinement configuration with cylindrical symmetry, in which nonaxisymmetric perturbations are investigated using the local approximation. Starting from the simplest case of an ideal plasma, the corresponding dispersion relations are derived for more complicated models including the physical effects of parallel and perpendicular viscosities. The Friemann-Rotenberg approach used for ideal plasmas is generalized for the viscous model and an analytical expression for the instability boundary is obtained. It is shown that, in addition to the standard effect of radial derivative of the rotation frequency (the Velikhov effect), which can be destabilizing or stabilizing depending on the sign of this derivative in the ideal plasma, there is a destabilizing effect proportional to the fourth power of the rotation frequency, or, what is the same, to the square of the plasma pressure gradient, and to the square of the azimuthal mode number of the perturbations. It is shown that the instability boundary also depends on the product of the plasma pressure and density gradients, which has a destabilizing effect when it is negative. In the case of parallel viscosity, the MRI looks like an ideal instability independent of viscosity, while, in the case of strong perpendicular viscosity, it is a dissipative instability with the growth rate inversely proportional to the characteristic viscous decay rate. We point out, however, that the modes of the continuous range of the magnetohydrodynamics spectrum are not taken into account in this paper, and they can be more dangerous than those that are considered. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical theory of the nonlocal magnetorotational instability (MRI) is developed for the simplest astrophysical plasma model. It is assumed that the rotation frequency profile has a steplike character, so that there are two regions in which it has constant different values, separated by a narrow transition layer. The surface wave approach is employed to investigate the MRI in this configuration. It is shown that the main regularities of the nonlocal MRI are similar to those of the local instability and that driving the nonaxisymmetric MRI is less effective than the axisymmetric one, also for the case of the nonlocal instability. The existence of nonlocal instabilities in nonmagnetized plasma is predicted. (c) 2008 American Institute of Physics.