940 resultados para bacteria genome nucleotide usage


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as "obligate predators" because only by mutations, often in gene bd0108, are 1 in ~1x10(7) of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B. bacteriovorus strain HD100 suggested that predatory consumption of prey DNA by lytic enzymes made Bdellovibrio less likely than other bacteria to acquire DNA by lateral gene transfer (LGT). However the Doolittle and Pan groups predicted, in silico, both ancient and recent lateral gene transfer into the B. bacteriovorus HD100 genome.

RESULTS: To test these predictions, we isolated a predatory bacterium from the River Tiber- a good potential source of LGT as it is rich in diverse bacteria and organic pollutants- by enrichment culturing with E. coli prey cells. The isolate was identified as B. bacteriovorus and named as strain Tiberius. Unusually, this Tiberius strain showed simultaneous prey-independent growth on organic nutrients and predatory growth on live prey. Despite the prey-independent growth, the homolog of bd0108 did not have typical prey-independent-type mutations. The dual growth mode may reflect the high carbon content of the river, and gives B. bacteriovorus Tiberius extended non-predatory contact with the other bacteria present. The HD100 and Tiberius genomes were extensively syntenic despite their different cultured-terrestrial/freshly-isolated aquatic histories; but there were significant differences in gene content indicative of genomic flux and LGT. Gene content comparisons support previously published in silico predictions for LGT in strain HD100 with substantial conservation of genes predicted to have ancient LGT origins but little conservation of AT-rich genes predicted to be recently acquired.

CONCLUSIONS: The natural niche and dual predatory, and prey-independent growth of the B. bacteriovorus Tiberius strain afforded it extensive non-predatory contact with other marine and freshwater bacteria from which LGT is evident in its genome. Thus despite their arsenal of DNA-lytic enzymes; Bdellovibrio are not always predatory in natural niches and their genomes are shaped by acquiring whole genes from other bacteria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: HIV-infected individuals have an increased risk of myocardial infarction. Antiretroviral therapy (ART) is regarded as a major determinant of dyslipidemia in HIV-infected individuals. Previous genetic studies have been limited by the validity of the single-nucleotide polymorphisms (SNPs) interrogated and by cross-sectional design. Recent genome-wide association studies have reliably associated common SNPs to dyslipidemia in the general population. METHODS AND RESULTS: We validated the contribution of 42 SNPs (33 identified in genome-wide association studies and 9 previously reported SNPs not included in genome-wide association study chips) and of longitudinally measured key nongenetic variables (ART, underlying conditions, sex, age, ethnicity, and HIV disease parameters) to dyslipidemia in 745 HIV-infected study participants (n=34 565 lipid measurements; median follow-up, 7.6 years). The relative impact of SNPs and ART to lipid variation in the study population and their cumulative influence on sustained dyslipidemia at the level of the individual were calculated. SNPs were associated with lipid changes consistent with genome-wide association study estimates. SNPs explained up to 7.6% (non-high-density lipoprotein cholesterol), 6.2% (high-density lipoprotein cholesterol), and 6.8% (triglycerides) of lipid variation; ART explained 3.9% (non-high-density lipoprotein cholesterol), 1.5% (high-density lipoprotein cholesterol), and 6.2% (triglycerides). An individual with the most dyslipidemic antiretroviral and genetic background had an approximately 3- to 5-fold increased risk of sustained dyslipidemia compared with an individual with the least dyslipidemic therapy and genetic background. CONCLUSIONS: In the HIV-infected population treated with ART, the weight of the contribution of common SNPs and ART to dyslipidemia was similar. When selecting an ART regimen, genetic information should be considered in addition to the dyslipidemic effects of ART agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND  Whole genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single nucleotide polymorphism (SNP)-typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS  Based on genome sequences of three historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1,642 patient isolates, and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS  We identified 68 patients associated with the outbreak strain. Most were diagnosed in 1991-1995, but cases were observed until 2011. Two thirds belonged to the homeless and substance abuser milieu. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into three sub-clusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS  Strain-specific SNP-genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real-time and at high resolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sensitive and precise in vitro technique for detecting DNA strand discontinuities produced in vivo has been developed. The procedure, a form of runoff DNA synthesis on molecules released from lysed bacterial cells, mapped precisely the position of cleavage of the plasmid pMV158 leading strand origin in Streptococcus pneumoniae and the site of strand scission, nic, at the transfer origins of F and the F-like plasmid R1 in Escherichia coli. When high frequency of recombination strains of E. coli were examined, DNA strand discontinuities at the nic positions of the chromosomally integrated fertility factors were also observed. Detection of DNA strand scission at the nic position of F DNA in the high frequency of recombination strains, as well as in the episomal factors, was dependent on sexual expression from the transmissable element, but was independent of mating. These results imply that not only the transfer origins of extrachromosomal F and F-like fertility factors, but also the origins of stably integrated copies of these plasmids, are subject to an equilibrium of cleavage and ligation in vivo in the absence of DNA transfer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital component of Drosophila cellular immunity. To identify novel genes that mediate the cellular response to bacteria, we conducted three separate genetic screens using the Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also screened for the ability of their hemocytes to clear S. aureus infection through the process of phagosome maturation. Genome-wide association analyses were performed to identify potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or in 528 candidate genes, many of which have no known role in immunity. Three genes, dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells significantly impaired the innate immune response to S. aureus. The DGRP S. aureus screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 mutant flies was analyzed and it was found that A2bp1 negatively regulates the expression of the Immunoglobulin-superfamily member Down syndrome adhesion molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis. Overall, we present an examination of the cellular immune response to bacteria with the aim of identifying and characterizing roles for novel mediators of innate immunity in Drosophila. By screening panel of lines in which all genetic variants are known, we successfully identified a large set of candidate genes that could provide a basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, immune-specific role for the highly conserved Fox-1 family member, A2bp1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The quality and the speed for genome sequencing has advanced at the same time that technology boundaries are stretched. This advancement has been divided so far in three generations. The first-generation methods enabled sequencing of clonal DNA populations. The second-generation massively increased throughput by parallelizing many reactions while the third-generation methods allow direct sequencing of single DNA molecules. The first techniques to sequence DNA were not developed until the mid-1970s, when two distinct sequencing methods were developed almost simultaneously, one by Alan Maxam and Walter Gilbert, and the other one by Frederick Sanger. The first one is a chemical method to cleave DNA at specific points and the second one uses ddNTPs, which synthesizes a copy from the DNA chain template. Nevertheless, both methods generate fragments of varying lengths that are further electrophoresed. Moreover, it is important to say that until the 1990s, the sequencing of DNA was relatively expensive and it was seen as a long process. Besides, using radiolabeled nucleotides also compounded the problem through safety concerns and prevented the automation. Some advancements within the first generation include the replacement of radioactive labels by fluorescent labeled ddNTPs and cycle sequencing with thermostable DNA polymerase, which allows automation and signal amplification, making the process cheaper, safer and faster. Another method is Pyrosequencing, which is based on the “sequencing by synthesis” principle. It differs from Sanger sequencing, in that it relies on the detection of pyrophosphate release on nucleotide incorporation. By the end of the last millennia, parallelization of this method started the Next Generation Sequencing (NGS) with 454 as the first of many methods that can process multiple samples, calling it the 2º generation sequencing. Here electrophoresis was completely eliminated. One of the methods that is sometimes used is SOLiD, based on sequencing by ligation of fluorescently dye-labeled di-base probes which competes to ligate to the sequencing primer. Specificity of the di-base probe is achieved by interrogating every 1st and 2nd base in each ligation reaction. The widely used Solexa/Illumina method uses modified dNTPs containing so called “reversible terminators” which blocks further polymerization. The terminator also contains a fluorescent label, which can be detected by a camera. Now, the previous step towards the third generation was in charge of Ion Torrent, who developed a technique that is based in a method of “sequencing-by-synthesis”. Its main feature is the detection of hydrogen ions that are released during base incorporation. Likewise, the third generation takes into account nanotechnology advancements for the processing of unique DNA molecules to a real time synthesis sequencing system like PacBio; and finally, the NANOPORE, projected since 1995, also uses Nano-sensors forming channels obtained from bacteria that conducts the sample to a sensor that allows the detection of each nucleotide residue in the DNA strand. The advancements in terms of technology that we have nowadays have been so quick, that it makes wonder: ¿How do we imagine the next generation?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.