951 resultados para automated static image analysis
Resumo:
Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the identification and quantification of Y. lipolytica W29 and MTLY40-2P strains dimorphic growth, cultivated in batch cultures on hydrophilic (glucose and N-acetylglucosamine (GlcNAc) and hydrophobic (olive oil and castor oil) media. The morphological characterization of yeast cells by QIA techniques revealed that hydrophobic carbon sources, namely castor oil, should be preferred for both strains growth in the yeast single cell morphotype. On the other hand, hydrophilic sugars, namely glucose and GlcNAc caused a dimorphic transition growth towards the hyphae morphotype. Experiments for γ-decalactone production with MTLY40-2P strain in two distinct morphotypes (yeast single cells and hyphae cells) were also performed. The obtained results showed the adequacy of the proposed morphology monitoring tool in relation to each morphotype on the aroma production ability. The present work allowed establishing that QIA techniques can be a valuable tool for the identification of the best culture conditions for industrial processes implementation.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
Images obtained from high-throughput mass spectrometry (MS) contain information that remains hidden when looking at a single spectrum at a time. Image processing of liquid chromatography-MS datasets can be extremely useful for quality control, experimental monitoring and knowledge extraction. The importance of imaging in differential analysis of proteomic experiments has already been established through two-dimensional gels and can now be foreseen with MS images. We present MSight, a new software designed to construct and manipulate MS images, as well as to facilitate their analysis and comparison.
Resumo:
A fully-automated 3D image analysis method is proposed to segment lung nodules in HRCT. A specific gray-level mathematical morphology operator, the SMDC-connection cost, acting in the 3D space of the thorax volume is defined in order to discriminate lung nodules from other dense (vascular) structures. Applied to clinical data concerning patients with pulmonary carcinoma, the proposed method detects isolated, juxtavascular and peripheral nodules with sizes ranging from 2 to 20 mm diameter. The segmentation accuracy was objectively evaluated on real and simulated nodules. The method showed a sensitivity and a specificity ranging from 85% to 97% and from 90% to 98%, respectively.
Resumo:
In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk), and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve), at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 %) revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm). Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm²) as well as in CXve (-4231 to 612.1 mm²). However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are closer to the results obtained with the reference method.
Resumo:
Selostus: Tasoskannerin ja digitaalisen kuva-analyysimenetelmän kalibrointi juurten morfologian kvantifioimiseksi
Resumo:
This research project investigated the use of image analysis to measure the air void parameters of concrete specimens produced under standard laboratory conditions. The results obtained from the image analysis technique were compared to results obtained from plastic air content tests, Danish air meter tests (also referred to as Air Void Analyzer tests), high-pressure air content tests on hardened concrete, and linear traverse tests (as per ASTM C-457). Hardened concrete specimens were sent to three different laboratories for the linear traverse tests. The samples that were circulated to the three labs consisted of specimens that needed different levels of surface preparation. The first set consisted of approximately 18 specimens that had been sectioned from a 4 in. by 4 in. by 18 in. (10 cm by 10 cm by 46 cm) beam using a saw equipped with a diamond blade. These specimens were subjected to the normal sample preparation techniques that were commonly employed by the three different labs (each lab practiced slightly different specimen preparation techniques). The second set of samples consisted of eight specimens that had been ground and polished at a single laboratory. The companion labs were only supposed to retouch the sample surfaces if they exhibited major flaws. In general, the study indicated that the image analysis test results for entrained air content exhibited good to strong correlation to the average values determined via the linear traverse technique. Specimens ground and polished in a single laboratory and then circulated to the other participating laboratories for the air content determinations exhibited the strongest correlation between the image analysis and linear traverse techniques (coefficient of determination, r-squared = 0.96, for n=8). Specimens ground and polished at each of the individual laboratories exhibited considerably more scatter (coefficient of determination, r-squared = 0.78, for n=16). The image analysis technique tended to produce low estimates of the specific surface of the voids when compared to the results from the linear traverse method. This caused the image analysis spacing factor calculations to produce larger values than those obtained from the linear traverse tests. The image analysis spacing factors were still successful at distinguishing between the frost-prone test specimens and the other (more durable) test specimens that were studied in this research project.
Resumo:
Evaluation of root traits may be facilitated if they are assessed on samples of the root system. The objective of this work was to determine the sample size of the root system in order to estimate root traits of common bean (Phaseolus vulgaris L.) cultivars by digital image analysis. One plant was grown per pot and harvested at pod setting, with 64 and 16 pots corresponding to two and four cultivars in the first and second experiments, respectively. Root samples were scanned up to the completeness of the root system and the root area and length were estimated. Scanning a root sample demanded 21 minutes, and scanning the entire root system demanded 4 hours and 53 minutes. In the first experiment, root area and length estimated with two samples showed, respectively, a correlation of 0.977 and 0.860, with these traits measured in the entire root. In the second experiment, the correlation was 0.889 and 0.915. The increase in the correlation with more than two samples was negligible. The two samples corresponded to 13.4% and 16.9% of total root mass (excluding taproot and nodules) in the first and second experiments. Taproot stands for a high proportion of root mass and must be deducted on root trait estimations. Samples with nearly 15% of total root mass produce reliable root trait estimates.
Resumo:
The major objective of this work was to evaluate the potential of image analysis for characterizing air voids in Portland cement Concrete (PCC), voids and constituents of Asphalt Concrete (AC) and aggregate gradation in AC. Images for analysis were obtained from a scanning electron microscope (SEM). Sample preparation techniques are presented that enhance signal differences so that backscattered electron (BSE) imaging, which is sensitive to atomic number changes, can be effectively employed. Work with PCC and AC pavement core samples has shown that the low vacuum scanning electron microscope (LVSEM) is better suited towards rapid analyses. The conventional high vacuum SEM can also be used for AC and PCC analyses but some distortion within the sample matrix will occur. Images with improved resolution can be obtained from scanning electron microscope (SEM) backscatter electron (BSE) micrographs. In a BSE image, voids filled with barium sulfate/resin yield excellent contrast in both PCC and AC. There is a good correlation between percent of air by image analysis and linear traverse.
Resumo:
The major objective of this project is to evaluate image analysis for characterizing air voids in Portland cement contract (PCC) and asphalt concrete (AC) and aggregate gradation in asphalt concrete. Phase 1 of this project has concentrated on evaluation and refinement of sample preparation techniques, evaluation of methods and instruments for conducting image analysis, and finally, analysis and comparison of a select portion of samples. Preliminary results suggest a strong correlation between the results obtained from the linear traverse method and image analysis methods for determining percent air voids in concrete. Preliminary work with asphalt samples has shown that damage caused by a high vacuum of the conventional scanning electron microscope (SEM) may too disruptive. Alternative solutions have been explored, including confocal microscopy and low vacuum electron microscopy. Additionally, a conventional high vacuum SEM operating at a marginal operating vacuum may suffice.
Resumo:
The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.
Resumo:
Tärkeä tehtävä ympäristön tarkkailussa on arvioida ympäristön nykyinen tila ja ihmisen siihen aiheuttamat muutokset sekä analysoida ja etsiä näiden yhtenäiset suhteet. Ympäristön muuttumista voidaan hallita keräämällä ja analysoimalla tietoa. Tässä diplomityössä on tutkittu vesikasvillisuudessa hai vainuja muutoksia käyttäen etäältä hankittua mittausdataa ja kuvan analysointimenetelmiä. Ympäristön tarkkailuun on käytetty Suomen suurimmasta järvestä Saimaasta vuosina 1996 ja 1999 otettuja ilmakuvia. Ensimmäinen kuva-analyysin vaihe on geometrinen korjaus, jonka tarkoituksena on kohdistaa ja suhteuttaa otetut kuvat samaan koordinaattijärjestelmään. Toinen vaihe on kohdistaa vastaavat paikalliset alueet ja tunnistaa kasvillisuuden muuttuminen. Kasvillisuuden tunnistamiseen on käytetty erilaisia lähestymistapoja sisältäen valvottuja ja valvomattomia tunnistustapoja. Tutkimuksessa käytettiin aitoa, kohinoista mittausdataa, minkä perusteella tehdyt kokeet antoivat hyviä tuloksia tutkimuksen onnistumisesta.
Resumo:
Postprint (published version)
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
Multispectral images are becoming more common in the field of remote sensing, computer vision, and industrial applications. Due to the high accuracy of the multispectral information, it can be used as an important quality factor in the inspection of industrial products. Recently, the development on multispectral imaging systems and the computational analysis on the multispectral images have been the focus of a growing interest. In this thesis, three areas of multispectral image analysis are considered. First, a method for analyzing multispectral textured images was developed. The method is based on a spectral cooccurrence matrix, which contains information of the joint distribution of spectral classes in a spectral domain. Next, a procedure for estimating the illumination spectrum of the color images was developed. Proposed method can be used, for example, in color constancy, color correction, and in the content based search from color image databases. Finally, color filters for the optical pattern recognition were designed, and a prototype of a spectral vision system was constructed. The spectral vision system can be used to acquire a low dimensional component image set for the two dimensional spectral image reconstruction. The data obtained by the spectral vision system is small and therefore convenient for storing and transmitting a spectral image.