467 resultados para arrangiamenti iperpiani, combinatoria, topologia, coomologia
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nesta tese é proposta uma metodologia para identificação automática de topologias de linhas telefônicas compostas de uma ou mais seções de linha, as quais são utilizadas em sistemas de linhas digitais de assinante (DSL, do inglês digital subscriber line). Métodos com esta finalidade são fundamentais para a qualificação da linha com o objetivo de instalação do serviço DSL, em especial na atualização para serviços como o VDSL2 ou para adoção de "vetorização". Com o intuito de ser relevante para as operadoras na qualificação de uma rede inteira, composta de milhões de linhas, é fundamental que, além de precisão, métodos de qualificação tenham baixo custo computacional. Os métodos desenvolvidos são baseados nessa premissa e fazem análise da resposta ao impulso e da resposta à reflectometria no domínio do tempo de uma dada linha. Esses sinais são analisados utilizando-se um método de detecção de bordas, baseado em transformada wavelet, para identificar e extrair características de sinal que contenham informação sobre a topologia da linha. Dependendo das características disponíveis, é utilizado um dos três sistemas especialistas desenvolvidos para interpretação dessas informações e identificação da topologia. Estas metodologias são avaliadas através de um conjunto de teste de linhas reais medidas em laboratório. Seus resultados são comparados com os resultados de dois outros métodos implementados a partir da literatura. Os resultados obtidos mostram que os métodos propostos são eficientes na estimação de informações da topologia da linha e possuem reduzido custo computacional quando comparados às implementações das outras técnicas avaliadas.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Algoritmos para reconhecimento de 3-variedades utilizam-se do conceito de superfície normal, sendo assim, pode-se então tratar problemas de teoria de 3-variedades como sendo de programação linear. Como exemplos tem-se o Algoritmo de reconhecimento da 3-esfera triangulável de Rubinstein-Thompson que é implementado na suíte de software Regina, como a decomposição soma conexa de 3-variedades. A completa classificação de 3-variedades pode ser realizada por meio de algoritmos, possuindo assim relevância para o Programa de Geometrização de Thurston para obtenção de resultados inicialmente utilizando topologia computacional. O objetivo do presente trabalho é discorrer sobre uma aplicação do software Regina. Obteve-se durante a elaboração do presente trabalho, o resultado entre a comparação da 3-esfera homológica de Poincaré com a 3-esfera, parte importante para o entendimento da Conjectura de Poincaré e do Programa de Geometrização.
Resumo:
Lo scopo di questa tesi è il calcolo dell'anello di coomologia di de Rham della varietà delle bandiere di uno spazio vettoriale complesso. Per prima cosa introduciamo la coomologia di de Rham e riassumiamo le sue principali proprietà. Definiamo poi la varietà delle bandiere di uno spazio vettoriale complesso, e, utilizzando la teoria delle classi di Chern, ne calcoliamo l'anello di coomologia di de Rham.
Resumo:
Da oltre mezzo secolo i parchi di divertimento sono strutture complesse e altamente organizzate, entro cui si muovono migliaia di persone quotidianamente; in cui l'elettrificazione, la manutenzione, la sicurezza (sia come safety sia come security) non possono essere lasciate all'improvvisazione. Fra i diversi modelli matematici con cui è possibile rappresentare un parco di divertimenti i grafi si adattano bene a rappresentare l'organizzazione "geografica" delle attrazioni e dei sentieri che le collegano. Fortunatamente la teoria dei grafi si presta anche molto bene all'impostazione e risoluzione dei problemi di ottimizzazione, fornendo quindi uno strumento privilegiato per miglioramenti strutturali nella direzione sia del risparmio economico, sia della fruizione ottimale delle strutture. In questa tesi ho analizzato un aspetto particolare dei grafi associati a quattro parchi d'attrazione: le distanze reciproche tra attrazioni e in particolare la collocazione dei "centri", cioè di vertici del grafo per cui la massima distanza da altri vertici sia minima. I calcoli sono stati eseguiti adattando un'implementazione esistente in Matlab dell'algoritmo di Dijkstra, utilizzando in ingresso le matrici di adiacenza dei grafi. Dopo un capitolo dedicato ai richiami essenziali di teoria dei grafi, il capitolo due traccia una breve storia dei parchi d'attrazione concentrandosi sui quattro che sono l'oggetto di questo studio. Il terzo capitolo, fulcro teorico della tesi, descrive la sperimentazione riportata nel capitolo quattro.
Resumo:
La tesi ha lo scopo di iniziare, in quanto non lo esaurisce completamente, a riordinare il percorso fatto nella stima del kissing number.
Resumo:
La presente tesi si propone di fornire un breve compendio sulla teoria dei complessi casuali, ramo di recente sviluppo della topologia algebrica applicata. Nell'illustrare i risultati più significativi ottenuti in tale teoria, si è voluto enfatizzare le modalità che permettono di affrontare con strumenti probabilistici lo studio delle proprietà topologiche ed algebriche dei complessi casuali.
Resumo:
In questa tesi si è data una dimostrazione dovuta ad Andreotti e Frenkel del Teorema di Lefschetz, utilizzando gli strumenti e i risultati della Teoria di Morse.
Resumo:
Lo scopo della tesi è dimostrare un teorema che offre una condizione necessaria e sufficiente affinché un poliedro con facce identificate risulti una varietà tridimensionale. Nel primo capitolo si descrive una possibile metodologia di studio e presentazione delle superfici al fine di fare un confronto con le 3-varietà. Nel secondo capitolo, prima di studiare il teorema principale, si descrivono nozioni di topologia algebrica utili nella sua dimostrazione: la coomologia e la dualità di Poincaré. Infine il terzo capitolo è dedicato alla descrizione di due esempi di 3-varietà e ad un controesempio al teorema in dimensione 5.
Resumo:
Definizioni e enunciati riguardo al gruppo fondamentale, alle azioni di gruppo, ai rivestimenti, alle varietà topologiche, differenziabili e riemanniane, alle isometrie e ai gruppi discreti di isometrie. Approfondimento riguardo alle superfici connesse, compatte e orientabili con classificazione topologica, definizione di curvatura gaussiana con classificazione delle superfici in base al valore della curvatura, teorema di Killing-Hopf, teorema di uniformizzazione, enunciato del teorema che verrà dimostrato: la sfera è l'unica superficie connessa, compatta e orientabile ellittica, il toro è l'unica piatta, le somme connesse di g tori (g>1) sono iperboliche. Descrizione del piano euclideo con relativa metrica, descrizione delle sue isometrie, teorema di Chasles con dimostrazione, dimostrazione del toro come unica superficie connessa, compatta e orientabile piatta. Descrizione della sfera con relativa metrica, descrizione delle sue isometrie, dimostrazione della semplicità di SO(3), dimostrazione della sfera come unica superficie connessa, compatta e orientabile ellittica. Descrizione di due modelli del piano iperbolico, descrizione delle sue isometrie, dimostrazione del fatto che le somme connesse di g tori (g>1) sono iperboliche. Definizione di gruppo Fuchsiano e di spazio di Teichmuller.
Resumo:
La tesis está focalizada en la resolución de problemas de optimización combinatoria, haciendo uso de las opciones tecnológicas actuales que ofrecen las tecnologías de la información y las comunicaciones, y la investigación operativa. Los problemas de optimización combinatoria se resuelven en general mediante programación lineal y metaheurísticas. La aplicación de las técnicas de resolución de los problemas de optimización combinatoria requiere de una elevada carga computacional, y los algoritmos deben diseñarse, por un lado pensando en la efectividad para encontrar buenas soluciones del problema, y por otro lado, pensando en un uso adecuado de los recursos informáticos disponibles. La programación lineal y las metaheurísticas son técnicas de resolución genéricas, que se pueden aplicar a diferentes problemas, partiendo de una base común que se particulariza para cada problema concreto. En el campo del desarrollo de software, los frameworks cumplen esa función de comenzar un proyecto con el trabajo general ya disponible, con la opción de cambiar o extender ese comportamiento base o genérico, para construir el sistema concreto, lo que permite reducir el tiempo de desarrollo, y amplía las posibilidades de éxito del proyecto. En esta tesis se han desarrollado dos frameworks de desarrollo. El framework ILP permite modelar y resolver problemas de programación lineal, de forma independiente al software de resolución de programación lineal que se utilice. El framework LME permite resolver problemas de optimización combinatoria mediante metaheurísticas. Tradicionalmente, las aplicaciones de resolución de problemas de optimización combinatoria son aplicaciones de escritorio que permiten gestionar toda la información de entrada del problema y resuelven el problema en local, con los recursos hardware disponibles. Recientemente ha aparecido un nuevo paradigma de despliegue y uso de aplicaciones que permite compartir recursos informáticos especializados por Internet. Esta nueva forma de uso de recursos informáticos es la computación en la nube, que presenta el modelo de software como servicio (SaaS). En esta tesis se ha construido una plataforma SaaS, para la resolución de problemas de optimización combinatoria, que se despliega sobre arquitecturas compuestas por procesadores multi-núcleo y tarjetas gráficas, y dispone de algoritmos de resolución basados en frameworks de programación lineal y metaheurísticas. Toda la infraestructura es independiente del problema de optimización combinatoria a resolver, y se han desarrollado tres problemas que están totalmente integrados en la plataforma SaaS. Estos problemas se han seleccionado por su importancia práctica. Uno de los problemas tratados en la tesis, es el problema de rutas de vehículos (VRP), que consiste en calcular las rutas de menor coste de una flota de vehículos, que reparte mercancías a todos los clientes. Se ha partido de la versión más clásica del problema y se han hecho estudios en dos direcciones. Por un lado se ha cuantificado el aumento en la velocidad de ejecución de la resolución del problema en tarjetas gráficas. Por otro lado, se ha estudiado el impacto en la velocidad de ejecución y en la calidad de soluciones, en la resolución por la metaheurística de colonias de hormigas (ACO), cuando se introduce la programación lineal para optimizar las rutas individuales de cada vehículo. Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. Otro de los problemas tratados en la tesis, es el problema de asignación de flotas (FAP), que consiste en crear las rutas de menor coste para la flota de vehículos de una empresa de transporte de viajeros. Se ha definido un nuevo modelo de problema, que engloba características de problemas presentados en la literatura, y añade nuevas características, lo que permite modelar los requerimientos de las empresas de transporte de viajeros actuales. Este nuevo modelo resuelve de forma integrada el problema de definir los horarios de los trayectos, el problema de asignación del tipo de vehículo, y el problema de crear las rotaciones de los vehículos. Se ha creado un modelo de programación lineal para el problema, y se ha resuelto por programación lineal y por colonias de hormigas (ACO). Este problema se ha desarrollado con los frameworks ILP y LME, y está disponible en la plataforma SaaS. El último problema tratado en la tesis es el problema de planificación táctica de personal (TWFP), que consiste en definir la configuración de una plantilla de trabajadores de menor coste, para cubrir una demanda de carga de trabajo variable. Se ha definido un modelo de problema muy flexible en la definición de contratos, que permite el uso del modelo en diversos sectores productivos. Se ha definido un modelo matemático de programación lineal para representar el problema. Se han definido una serie de casos de uso, que muestran la versatilidad del modelo de problema, y permiten simular el proceso de toma de decisiones de la configuración de una plantilla de trabajadores, cuantificando económicamente cada decisión que se toma. Este problema se ha desarrollado con el framework ILP, y está disponible en la plataforma SaaS. ABSTRACT The thesis is focused on solving combinatorial optimization problems, using current technology options offered by information technology and communications, and operations research. Combinatorial optimization problems are solved in general by linear programming and metaheuristics. The application of these techniques for solving combinatorial optimization problems requires a high computational load, and algorithms are designed, on the one hand thinking to find good solutions to the problem, and on the other hand, thinking about proper use of the available computing resources. Linear programming and metaheuristic are generic resolution techniques, which can be applied to different problems, beginning with a common base that is particularized for each specific problem. In the field of software development, frameworks fulfill this function that allows you to start a project with the overall work already available, with the option to change or extend the behavior or generic basis, to build the concrete system, thus reducing the time development, and expanding the possibilities of success of the project. In this thesis, two development frameworks have been designed and developed. The ILP framework allows to modeling and solving linear programming problems, regardless of the linear programming solver used. The LME framework is designed for solving combinatorial optimization problems using metaheuristics. Traditionally, applications for solving combinatorial optimization problems are desktop applications that allow the user to manage all the information input of the problem and solve the problem locally, using the available hardware resources. Recently, a new deployment paradigm has appeared, that lets to share hardware and software resources by the Internet. This new use of computer resources is cloud computing, which presents the model of software as a service (SaaS). In this thesis, a SaaS platform has been built for solving combinatorial optimization problems, which is deployed on architectures, composed of multi-core processors and graphics cards, and has algorithms based on metaheuristics and linear programming frameworks. The SaaS infrastructure is independent of the combinatorial optimization problem to solve, and three problems are fully integrated into the SaaS platform. These problems have been selected for their practical importance. One of the problems discussed in the thesis, is the vehicle routing problem (VRP), which goal is to calculate the least cost of a fleet of vehicles, which distributes goods to all customers. The VRP has been studied in two directions. On one hand, it has been quantified the increase in execution speed when the problem is solved on graphics cards. On the other hand, it has been studied the impact on execution speed and quality of solutions, when the problem is solved by ant colony optimization (ACO) metaheuristic, and linear programming is introduced to optimize the individual routes of each vehicle. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. Another problem addressed in the thesis, is the fleet assignment problem (FAP), which goal is to create lower cost routes for a fleet of a passenger transport company. It has been defined a new model of problem, which includes features of problems presented in the literature, and adds new features, allowing modeling the business requirements of today's transport companies. This new integrated model solves the problem of defining the flights timetable, the problem of assigning the type of vehicle, and the problem of creating aircraft rotations. The problem has been solved by linear programming and ACO. This problem has been developed with the ILP and LME frameworks, and is available in the SaaS platform. The last problem discussed in the thesis is the tactical planning staff problem (TWFP), which is to define the staff of lower cost, to cover a given work load. It has been defined a very rich problem model in the definition of contracts, allowing the use of the model in various productive sectors. It has been defined a linear programming mathematical model to represent the problem. Some use cases has been defined, to show the versatility of the model problem, and to simulate the decision making process of setting up a staff, economically quantifying every decision that is made. This problem has been developed with the ILP framework, and is available in the SaaS platform.
Resumo:
Os motores de corrente contínua convencionais são muito bem conhecidos pela sua robustez e pelo seu alto nível de controlabilidade, alem do fato de possibilitarem a operação na região de enfraquecimento de campo (modo motor), quando esta situação se fizer necessária. Por estas características, as máquinas de corrente contínua ainda são empregadas nos dias atuais em nichos específicos de utilização. Não obstante, a máquina c.c. apresenta algumas desvantagens, principalmente a intensiva e dispendiosa manutenção eletromecânica necessária para sua operação. Como opção de sanar este problema, surgiram na década de 60, as máquinas elétricas de corrente contínua sem escovas (brushless) com excitação por ímãs permanentes de fluxo trapezoidal. O problema destas máquinas se deve justamente a impossibilidade da variação de fluxo de excitação uma vez que são produzidos puramente pelos ímãs. Sendo assim, este trabalho tem como propósito, o estudo de topologias diferenciadas da máquina elétrica, através de um circuito magnético não convencional para aplicação e utilização em sistemas de tração elétrica para operação na região de enfraquecimento de campo através da variação do fluxo resultante no entreferro. Como objeto de estudo, foi focada a topologia de fluxo axial com excitação híbrida, ou seja, dupla excitação (excitação a ímãs permanentes e excitação elétrica). Para o projeto da topologia proposta, nesta tese, adicionalmente ao método analítico, foram realizadas simulações computacionais para a comparação e refinamento dos resultados das grandezas eletromagnéticas da máquina.