941 resultados para analytical solution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Boussinesq equation appears as the zeroth-order term in the shallow water flow expansion of the non-linear equation describing the flow of fluid in an unconfined aquifer. One-dimensional models based on the Boussinesq equation have been used to analyse tide-induced water table fluctuations in coastal aquifers. Previous analytical solutions for a sloping beach are based on the perturbation parameter, epsilon(N) = alphaepsilon cot beta (in which beta is the beach slope, alpha is the amplitude parameter and epsilon is the shallow water parameter) and are limited to tan(-1) (alphaepsilon) much less than beta less than or equal to pi/2. In this paper, a new higher-order solution to the non-linear boundary value problem is derived. The results demonstrate the significant influence of the higher-order components and beach slope on the water table fluctuations. The relative difference between the linear solution and the present solution increases as 6 and a increase, and reaches 7% of the linear solution. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lateral-distortional buckling may occur in I-section beams with slender webs and stocky flanges. A computationally efficient method is presented in this paper to study this phenomenon. Previous studies on distortional buckling have been on the use of 3(rd) and 5(th) order polynomials to model the displacements. The present study provides an alternative way, using Fourier Series, to model the behaviour. Beams of different cross-sectional dimensions, load cases and restraint conditions are examined and compared. The accuracy and versatility of the method are verified by calibrating against the results of other published studies. The present method is believed to be a simple and efficient way of determining the buckling load and mode shapes of I-section beams that are susceptible to lateral-distortional buckling modes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative and the second order space derivative by the symmetric fractional derivative. Firstly, a method of separating variables is used to express the analytical solution of the tss-fde in terms of the Mittag–Leffler function. Secondly, we propose two numerical methods to approximate the Caputo time fractional derivative, namely, the finite difference method and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results are presented to demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three recent papers published in Chemical Engineering Journal studied the solution of a model of diffusion and nonlinear reaction using three different methods. Two of these studies obtained series solutions using specialized mathematical methods, known as the Adomian decomposition method and the homotopy analysis method. Subsequently it was shown that the solution of the same particular model could be written in terms of a transcendental function called Gauss’ hypergeometric function. These three previous approaches focused on one particular reactive transport model. This particular model ignored advective transport and considered one specific reaction term only. Here we generalize these previous approaches and develop an exact analytical solution for a general class of steady state reactive transport models that incorporate (i) combined advective and diffusive transport, and (ii) any sufficiently differentiable reaction term R(C). The new solution is a convergent Maclaurin series. The Maclaurin series solution can be derived without any specialized mathematical methods nor does it necessarily involve the computation of any transcendental function. Applying the Maclaurin series solution to certain case studies shows that the previously published solutions are particular cases of the more general solution outlined here. We also demonstrate the accuracy of the Maclaurin series solution by comparing with numerical solutions for particular cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An analytical solution is presented in this paper for the vibration response of a ribbed plate clamped on all its boundary edges by employing a travelling wave solution. A clamped ribbed plate test rig is also assembled in this study for the experimental investigation of the ribbed plate response and to provide verification results to the analytical solution. The dynamic characteristics and mode shapes of the ribbed plate are measured and compared to those obtained from the analytical solution and from finite element analysis (FEA). General good agreements are found between the results. Discrepancies between the computational and experimental results at low and high frequencies are also discussed. Explanations are offered in the study to disclose the mechanism causing the discrepancies. The dependency of the dynamic response of the ribbed plate on the distance between the excitation force and the rib is also investigated experimentally. It confirms the findings disclosed in a previous analytical study [T. R. Lin and J. Pan, A closed form solution for the dynamic response of finite ribbed plates. Journal of the Acoustical Society of America 119 (2006) 917-925] that the vibration response of a clamped ribbed plate due to a point force excitation is controlled by the plate stiffness when the source is more than a quarter plate bending wavelength away from the rib and from the plate boundary. The response is largely affected by the rib stiffness when the source location is less than a quarter bending wavelength away from the rib.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE) in two and three dimensions. We discuss and derive the analytical solution of the TFTE in two and three dimensions with nonhomogeneous Dirichlet boundary condition. This method can be extended to other kinds of the boundary conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Generalized fractional partial differential equations have now found wide application for describing important physical phenomena, such as subdiffusive and superdiffusive processes. However, studies of generalized multi-term time and space fractional partial differential equations are still under development. In this paper, the multi-term time-space Caputo-Riesz fractional advection diffusion equations (MT-TSCR-FADE) with Dirichlet nonhomogeneous boundary conditions are considered. The multi-term time-fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0, 1], [1, 2] and [0, 2], respectively. These are called respectively the multi-term time-fractional diffusion terms, the multi-term time-fractional wave terms and the multi-term time-fractional mixed diffusion-wave terms. The space fractional derivatives are defined as Riesz fractional derivatives. Analytical solutions of three types of the MT-TSCR-FADE are derived with Dirichlet boundary conditions. By using Luchko's Theorem (Acta Math. Vietnam., 1999), we proposed some new techniques, such as a spectral representation of the fractional Laplacian operator and the equivalent relationship between fractional Laplacian operator and Riesz fractional derivative, that enabled the derivation of the analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations. © 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multi-term time-fractional differential equations have been used for describing important physical phenomena. However, studies of the multi-term time-fractional partial differential equations with three kinds of nonhomogeneous boundary conditions are still limited. In this paper, a method of separating variables is used to solve the multi-term time-fractional diffusion-wave equation and the multi-term time-fractional diffusion equation in a finite domain. In the two equations, the time-fractional derivative is defined in the Caputo sense. We discuss and derive the analytical solutions of the two equations with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin conditions, respectively.