2 resultados para analytical solution
em CaltechTHESIS
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
The Earth is very heterogeneous, especially in the region close to the surface of the Earth, and in regions close to the core-mantle boundary (CMB). The lowermost mantle (bottom 300km of the mantle) is the place for fast anomaly (3% faster S velocity than PREM, modeled from Scd), for slow anomaly (-3% slower S velocity than PREM, modeled from S,ScS), for extreme anomalous structure (ultra-low velocity zone, 30% lower inS velocity, 10% lower in P velocity). Strong anomaly with larger dimension is also observed beneath Africa and Pacific, originally modeled from travel time of S, SKS and ScS. Given the heterogeneous nature of the earth, more accurate approach (than travel time) has to be applied to study the details of various anomalous structures, and matching waveform with synthetic seismograms has proven effective in constraining the velocity structures. However, it is difficult to make synthetic seismograms in more than 1D cases where no exact analytical solution is possible. Numerical methods like finite difference or finite elements are too time consuming in modeling body waveforms. We developed a 2D synthetic algorithm, which is extended from 1D generalized ray theory (GRT), to make synthetic seismograms efficiently (each seismogram per minutes). This 2D algorithm is related to WKB approximation, but is based on different principles, it is thus named to be WKM, i.e., WKB modified. WKM has been applied to study the variation of fast D" structure beneath the Caribbean sea, to study the plume beneath Africa. WKM is also applied to study PKP precursors which is a very important seismic phase in modeling lower mantle heterogeneity. By matching WKM synthetic seismograms with various data, we discovered and confirmed that (a) The D" beneath Caribbean varies laterally, and the variation is best revealed with Scd+Sab beyond 88 degree where Sed overruns Sab. (b) The low velocity structure beneath Africa is about 1500 km in height, at least 1000km in width, and features 3% reduced S velocity. The low velocity structure is a combination of a relatively thin, low velocity layer (200 km thick or less) beneath the Atlantic, then rising very sharply into mid mantle towards Africa. (c) At the edges of this huge Africa low velocity structures, ULVZs are found by modeling the large separation between S and ScS beyond 100 degree. The ULVZ to the eastern boundary was discovered with SKPdS data, and later is confirmed by PKP precursor data. This is the first time that ULVZ is verified with distinct seismic phase.