975 resultados para alpha-L-Arabinofuranosidase
Resumo:
An acidic polysaccharide (PY3) was isolated from the hot water extract of the red algae Porphyra yezoensis by successive column chromatographies over DEAE-cellulose and Sephadex G-200. PY3 with an average molecular weight of 1.8x10(5) was demonstrated to be composed of galactose (Gal), 3,6-anhydrogalactose (3,6-AnGal), 6-OSO3-galactose (6-OSO3-Gal) and xylose (Xyl) in an approximate molar ratio of 25 : 15, 10, 1. In view of Smith degradation and methylation and on the basis of spectral evidence including those of IR, GC, GC-MS, and H-1 and C-13 NMR, the most probable repeating unit of PY3 could be proposed as [(1-->3)beta -D-Gal(1 --> 4)alpha -L-3,6-AnGal](3)-[(1 --> 3)beta -D-Gal(1 --> 4)alpha -L-6-OSO3-Gal](2) with a xylose moiety at the C-6 of one of every twenty-five beta -D-Gal residues. To our knowledge, PY3 was shown to be the first porphyran possessing occasional xylose branches.
Resumo:
The structure of a polysaccharide from the red seaweed, Porphyra capensis, growing along the coast of Namibia and South Africa was investigated. Algae growing at different sites and collected at different times gave a polysaccharide extract with similar chemical components. FTIR and NMR spectral analysis showed that the polysaccharide from P. capensis had a typical porphyran structure. It has the linear backbone of alternating 3-linked beta-D-galactose and 4-linked alpha-L-galactose-6-sulfate or 3,6-anhydro-alpha- L-galactose units. The ratio of alpha-L-galactose-6-sulfate and the 3,6-anhydrogalactose is 121, as reflected by a H-1 NMR spectrum. A high degree of methylation occurred at the C-6 position of the D-galactose units. The degree of methylation was 0.64 for the D-galactose residues. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The sulfated galactan fraction F1 isolated from the red seaweed, Porphyra haitanensis, showed typical porphyran structure. It has a linear backbone of alternating 3-linked beta-D-galactosyl units and 4-linked alpha-L-galactosyl 6-sulfate and 3,6-anhydro-alpha-L-galactosyl units. The L-residues are mainly composed of alpha-L-galactosyl 6-sulfate units, and the 3,6-anhydrogalactosyl units are minor. Partial methylation occurred at the C-6 position of the D-galactosyl units and at the C-2 position of the 3,6-anhydro-alpha-L-galactosyl units. Intraperitoneal administration of F1 significantly decreased the lipid peroxidation in aging mice. F1 treatment increased the total antioxidant capacity and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in aging mice. The results indicated that F1 had significant in vivo antioxidant activity. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Polysaccharides from Ulva pertusa were isolated and prepared by extraction in hot water and precipitation by ethanol. The water-soluble polysaccharides were chemically well defined, containing 47.0% total carbohydrate, 23.2% uronic acids, 17.1% sulfate groups, 1.0% N and 29.9% ash. Gas chromatography analysis demonstrated that the neutral sugars were mainly composed of rhamnose, xylose and glucose and smaller amounts of mannose, galactose and arabinose. The FTIR and C-13-NMR spectra indicated that basic repeating units of the polysaccharides were (beta-D-GlcpA-(1->4)-alpha-L-Rhap 3S) and (alpha-L-IdopA-(1->4)-alpha-L-Rhap 3S). Fifty ICR mice were used to study the effect of water-soluble polysaccharides from Ulva pertusa on the level of plasma lipids, with inositol niacinate as positive control. The results indicated that the polysaccharides significantly lowered the contents of plasma total cholesterol, low-density lipoprotein cholesterol, triglyceride and markedly increased the contents of serum high-density lipoprotein cholesterol, compared with the hyperlipidemia control group (p<0.01). Moreover, administration of polysaccharides significantly decreased the atherogenic index. The present results suggest that the polysaccharides from Ulva pertusa have great potential for preventing ischemic cardiovascular and cerebrovascular diseases.
Resumo:
A low molecular weight fucogalactan, obtained from the brown seaweed Laminaria japonica, was separated into three fractions (LF1, LF2 and LF3) by DEAE-Sepharose FF column chromatography. All three fractions contained predominantly fucose, sulfate group and galactose. The results showed that the main fraction LF2 consisted of L-fucose, D-galactose and sulfate at a molar ratio 6:1:9. Structural study on the LF2 was carried out by NMR spectroscopy. The backbone of LF2 was primarily (1 -> 3)-linked alpha-L-fucopyranose residues (75%) and a few (1 -> 4)-alpha-L-fucopyranose linkages (25%). The branch points were at C-4 of 3-linked alpha-L-fucopyranose residues by beta-D-galactopyranose unites (35%, molar ratio) or at C-2 of 3-linked alpha-L-fucopyranose residues by non-reducing terminal fucose unites (65%, molar ratio). Sulfate groups occupied at position C-4 or C-2, sometimes C-2, 4 to fucose residues, and C-3 and/or C-4 to galactose residues. The structure of LF2 was supposed as following: [GRAPHICS] (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The contents of five pharmacologically active flavone and xanthone glycosides, namely, swertianolin, swertisin, isoorientin, mangiferin, and 7-O-[alpha-L-rhamnopyranosyl-(1 -> 2)-beta-D-xylopyranosyl]-1,8-dihydroxy-3-methoxyxanthone, extracted from Tibetan folk medicinal species Swertia mussotii and S. franchetiana were determined by capillary electrophoresis with diode-array detection. The separation of five components has been optimized with a capillary column with a total length of 48.5 cm and effective length of 40 cm (50 mu m i.d). The influence of the running buffer, the sodium dodecyl sulfonate (SDS) concentration, organic modifier, etc. on the resolution was evaluated. The background electrolyte contained 30 mM borate buffer, 28 mM SDS, 1.0% (v/v) acetonitrile, and was adjusted to pH 9.0 with 0.1 M NaOH. A good baseline resolution was obtained for the separation of five components within 5 min with the working voltage of 24 kV and a column temperature of 25 degrees C. The established method was rapid and reproducible for the separation and determination of five flavone and xanthone glycosides from the extracts of S. mussotii and franchetiana plant samples.
Resumo:
Two new benzochromone glycosides, rubrofusarin 6-O-alpha-L-rhamnosyl- (1 -> 6)-O-beta-D-glucopyranoside (1) and demethylflavasperone 10-O-beta-D-glucopyranoside (2), have been isolated from the stem of Berchemia racemosa Sieb. et Zucc. (Rhamnaceae). Their structures were elucidated on the basis of spectroscopic evidence.
Resumo:
A sensitive and specific reversed-phase high performance liquid chromatography (RP-HPLC) method with diode array detection (DAD) was established for the quantitative determination of the nine active components, namely, swertiamarin (SWM, 1), mangiferin (MA, 2), gentipicroside (GE, 3), sweroside (SWO, 4), isoorientin (IS, 5), swertisin (SWS, 6), swertianolin (SWN, 7), 7-O-[alpha-L-rhamnopyranosyl-1 -> 2)-beta-D-xylopyranosyl]-1,8-dihydroxy-3-methoxyxanthone (RX, 8), and bellidifolin (BE, 9) used as the external standard, in Tibetan folk medicinal species Swertia franchetiana. Based on the baseline chromatographic separation of most components from the methanolic extract of Swertia franchetiana on a reversed-phase Eclipse XDB-C8 column with water-acetonitrile-formic acid as mobile phase, the nine components were identified by comparison with standard samples and qualified by using the external standard method with DAD at 254 nm. The correlation coefficients of all the calibration curves were found to be higher than 0.9980. The relative standard deviations (RSDs) of the peak areas and retention times for the nine standards were less than 2.07% and 2.86%, respectively.
Resumo:
Evaluation of the cytotoxicity of an ethanolic root extract of Sideroxylonfoetidissimum subsp. gaumeri (Sapotaceae) revealed activity against the murine macrophage-like cell line RAW 264.7. Systematic bioassay-guided fractionation of this extract gave an active saponin-containing fraction from which four saponins were isolated. Use of 1D ((1)H, (13)C, DEPT135) and 2D (COSY, TOCSY, HSQC, and HMBC) NMR, mass spectrometry and sugar analysis gave their structures as 3-O-(beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, 3-O-beta-D-glucopyranosyl-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, 3-O-(beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)[beta-D-apiofuranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, and the known compound, 3-O-beta-D-glucopyranosyl-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-protobassic acid. Two further saponins were obtained from the same fraction, but as a 5:4 mixture comprising 3-O-(beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)[beta-D-apiofuranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid and 3-O-(beta-D-apiofuranosyl-(1-->3)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, respectively. This showed greater cytotoxicity (IC(50)=11.9+/-1.5 microg/ml) towards RAW 264.7 cells than the original extract (IC(50)=39.5+/-4.1 microg/ml), and the saponin-containing fraction derived from it (IC(50)=33.7+/-6.2 microg/ml).
Resumo:
The aim of this study was to visualize integrin expression by cells in interface tissue in relation to their ligands. Tissue samples were obtained from 25 patients undergoing revision of aseptically loose total joint replacements. Serial sections were immunolabeled for the integrins alpha (2)beta (1) alpha (v)beta (3), alpha (4)beta (1) alpha (L)beta (2) (CD11a), alpha (M)beta (2) (CD11b), and alpha (x)beta (2) (CD11c), and the ligands fibronectin, laminin, vitronectin, intercellular adhesion molecule-1, and vascular adhesion molecule-1. Most cells were found to express alpha (2)beta (1) most macrophages and giant cells expressed CD11b, and the majority of CD11a was found on perivascular T lymphocytes. From the small amount of alpha (4)beta (1) and vascular adhesion molecule-1 expression in the interface tissue and the combination of CD11a, CD11b, and intercellular adhesion molecule-1 expression, it would seem that macrophages use beta (2) integrins to transmigrate. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.
Resumo:
A new lupane type triterpenic acid, pulsatillic acid, and two new lupane type triterpenoid glycosides, pulsatilloside A and B, along with the known 23-hydroxybetulinic acid were isolated from the roots of Pulsatilla chinensis. Their structures were characterized as 3-oxo-23-hydroxy-lup-20(29)-en-28-oic acid, 3 beta, 23-dihydroxy-lup-20(29)-en-28-oic acid 3-O-alpha-L-arabinopyranoside and 3 beta, 23-dihydroxy-lup-20(29)-en-28-oic acid 28-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside on the basis of hydrolysis and spectral evidence including two-dimensional relay HOHAHA, one-dimensional multiple relay COSY and ROESY NMR techniques. Pulsatillic acid exhibited cytotoxic activities against P-388, Lewis lung carcinoma and human large-cell lung carcinoma.
Resumo:
Isolated from the mycelium, of Scedosporium prolificans were complex glycoproteins (RMP-Sp), with three structurally related components (HPSEC). RMP-Sp contained 35% protein and 62% carbohydrate with Rha, Ara, Man, Gal, Glc, and GlcNH(2) in a 18:1:24:8:6:5 molar ratio. Methylation analysis showed mainly nonreducing end- of Galp (13%), nonreducing end- (9%),2-O-(13%), and 3-O-subst. Rhap (7%), nonreducing end-(11%), 2-O-(10%), 3-O-(14%), and 2,6-di-O-subst. Manp units (13%). Mild reductive P-elimination of RMP-Sp gave alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-Manp-(1-->2)-D-Man-ol, with Man-ol substituted at O-6 with beta-D-Galp units, a related pentasaccharide lacking beta-D-Galp units, and beta-D-Galp-(1-->6)-[alpha-D-Manp-(1-->2)]-D-Man-ol in a 16:3:1 w/w ratio. Traces of Man-ol and Rha-ol were detected. ESI-MS showed HexHex-o1 and HCX(3-6)Hex-ol components. Three rhamnosyl units were peeled off successively from the penta- and hexasaccharide by ESI-MS-MS. The carbohydrate epitopes of RMP-Sp differ from those of the glycoprotein of Pseudallescheria boydii, a related opportunistic pathogen. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Asthma is a chronic respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR). One strategy to treat allergic diseases is the development of new drugs. Flavonoids are compounds derived from plants and are known to have antiallergic, anti-inflammatory, and antioxidant properties. To investigate whether the flavonoid kaempferol glycoside 3-O-[beta-D-glycopiranosil-(1 -> 6)-alpha-L-ramnopiranosil]-7-O-alpha-L-ramnopiranosil-kaempferol (GRRK) would be capable of modulating allergic airway disease (AAD) either as a preventive (GRRK P) or curative (GRRK C) treatment in an experimental model of asthma. At weekly intervals, BALB/c mice were subcutaneously (sc) sensitized twice with ovalbumin (OVA)/alum and challenged twice with OVA administered intranasally. To evaluate any preventive effects GRRK was administered 1 h (hour) before each OVA-sensitization and challenge, while to analyze the curative effects mice were first sensitized with OVA, followed by GRRK given at day 18 through 21. The onset: of AAD was evaluated 24 h after the last OVA challenge. Both treatments resulted in a dose-dependent reduction in total leukocyte and eosinophil counts in the bronchoalveolar lavage fluid (BAL). GRRK also decreased CD4(+), B220(+), MHC class II and CD40 molecule expressions in BAL cells. Histology and lung mechanic showed that GRRK suppressed mucus production and ameliorated the AHR induced by OVA challenge. Furthermore, GRRK impaired Th2 cytokine production (IL-5 and IL-13) and did not induce a Th1 pattern of inflammation. These findings demonstrate that GRRK treatment before or after established allergic lung disease down-regulates key asthmatic features. Therefore. GRRK has a potential clinical use for the treatment of allergic asthma. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A phytochemical investigation of the leaves and stems of Peperomia obtusifolia (Piperaceae) yielded a new flavone C-diglycoside isoswertisin-4`-methyl-ether-2 ``alpha-L-rhamnoside (1), along with four known compounds: isoswertisin-2 ``alpha-L-rhamnoside (2), (+)-diayangambin (3), 2-episesalatin (4) and corchoionoside C (5). The structures of the two flavone C-diglycosides (1, 2) were elucidated on the basis of 1D and 2D NMR spectroscopy and MS spectrometric data. These flavones were evaluated by bioautographic assay against Cladosporium cladosporioides and C. sphaerospermum and showed weak antifungal activity.