985 resultados para alfa-SiAlON-SiC composite
Resumo:
Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of heat treatment. The microhardness is increased on incorporation of SiC in Ni-P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature. Overall, the composite coating (ENC) was found to be superior as compared to particles free (EN) coating in both as-deposited and heat-treated conditions.
Resumo:
The mechanical properties and wear behaviour of B(SiC) fibre-reinforced metal matrix composites (MMCs) and aluminium alloy (2014) produced by metal infiltration technique were determined. Tensile tests were peliormed at different conditions on both the alloy matrix and its composite, and the tensile fracture surfaces were also examined by Scanning Electron Microscopy (SEM). Dry wear of the composite materials sliding on hardened steel was studied using a pin-on-disc type machine. The effect of fibre orientation on wear rate was studied to provide wear resistance engineering data on the MMCs. Tests were carried out with the wear surface sliding direction set normal, parallel and anti-parallel to the fibre axis. Experiments were perfonned for sliding speeds of 0.6, 1.0 and 1.6 m/s for a load range from 12 N to 60 N. A number of sensitive techniques were used to examine worn surface and debris, i.e: Scanning Electron Microscopy (SEM), Backscattered Electron Microscopy (BSEM) and X-ray Photoelectron Spectroscopy (XPS). Finally, the effect of fibre orientation on the wear rate of the Borsic-reinforced plastic matrix composites (PMCs) produced by hot pressing technique was also investigated under identical test conditions. It was found that the composite had a markedly increased tensile strength compared with the matrix. The wear results also showed that the composite exhibited extremely low wear rates compared to the matrix material and the wear rate increased with increasing sliding speed and normal load. The effect of fibre orientation was marked, the lowest wear rates were obtained by arranging the fibre perpendicular to the sliding surface, while the highest wear was obtained for the parallel orientation. The coefficient of friction was found to be lowest in the parallel orientation than the others. Wear of PMCs were influenced to the greatest extent by these test parameters although similar findings were obtained for both composites. Based on the results of analyses using SEM, BSED and XPS, possible wear mechanisms are suggested to explain the wear of these materials.
Resumo:
Knoop and Vickers indentation cracks have frequently been used as model 'precracks' in ceramic bend specimens for fracture toughness (K1c) determination. Indentation residual stress reduces the measured K1c but can be removed or accounted for by grinding, annealing, or modelling. Values of K1c are obtained for four materials using Vickers indentations and an improved stress intensity factor. Methods for residual stress removal or incorporation are compared, and the most reliable stress removal alternative is identified for each material. © 1996 The Institute of Materials.
Resumo:
The nature of subsurface cracks formed under and around Vickers hardness indentations is often assumed rather than identified. Subsurface cracks in four engineering ceramics are revealed using a penetrant technique, and flaw dimensions are recorded. The resulting data are used to investigate several aspects of indentation cracking, such as crack shape, functional relationships between indentation load and flaw dimensions, and the performance of indentation fracture toughness equations. An R curve is constructed for each of the materials. © 1995 The Institute of Materials.
Resumo:
The aging responses of 2124 Al-SiC p metal matrix composite (MMC) and unreinforced matrix alloy are studied and related to variations in tensile properties. The MMC is aged from Wo starting conditions: (i) stretched and naturally aged and (ii) re-solution treated. Accelerated aging occurs in both MMC conditions compared with unreinforced alloy. Tensile strengths and elastic moduli are improved in the MMC compared with the alloy, but ductility is reduced. Stretched MMC exhibits higher strength but lower ductility and modulus than re-solutioned MMC. The re-solutioned MMC fails by microvoid coalescence in low aging conditions, and by void nucleation and shear in high aging conditions. Failure of the stretched MMC initiates at the surface at specimen shoulders, illustrating the increased notch sensitivity of this condition, and propagates via a zigzag shear fracture mode. Zigzag facet size increases on gross aging. Particle fracture occurs during tensile failure, but also before testing as a result of the manufacturing process. © 1995 The Institute of Materials.
Resumo:
Ceramic matrix composites of Al2O3-SiC-(Al,Si) have been fabricated by directed melt oxidation of aluminum alloys into SiC particulate preforms. The proportions of Al2O3, alloy, and porosity in the composite can be controlled by proper selection of SLC particle size and the processing temperature. The wear resistance of composites was evaluated in pin-on-disk experiments against a hard steel substrate. Minimum wear rate comparable to conventional ceramics such as ZTA is recorded for the composition containing the highest fraction of alloy, owing to the development of a thin and adherent tribofilm with a low coefficient of friction.
Resumo:
The sliding-wear behavior of Al2O3-SiC-Al composites prepared by melt oxidation against a steel counterface has been recorded in a pin-on-disk machine. At high speeds and pressures (10 m/s, 20 MPa), friction and wear appear to be principally controlled by the in-situ formation of an interfacial film that consists of a layer of Fe3O4. The formation of this him is examined as a function of sliding speed, lubrication, and composite microstructure. A model is proposed in which high surface temperatures cause the preferential extrusion of aluminum from the composite onto the pin/disk interface. This promotes the adhesive pickup of iron and its oxidation to form a stable tribologically beneficial layer of Fe3O4.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.
Resumo:
Al2O3-SiC-(Al,Si) cermets are fabricated using the melt oxidation route. The tribological properties of the composites are tested under adhesive sliding and two body abrasion conditions. Under adhesive conditions, the network of residual aluminium in the matrix plays a role in the formation of a thin tribofilm on the interface while in abrasion the hardness of the composite plays a prominent tribological role. The work suggests that microstructural control can make this low temperature composite competitive with the conventional high temperature monolithic ceramics. (C) 1999 Published by Elsevier Science S.A. All rights reserved.
Resumo:
We report here the development of ultrafine grained ZrB2-SiC composites using TiSi2 as the sintering aid and spark plasma sintering (SPS) as the processing technique. It was observed that the presence of TiSi2 improved the sinterability of the composites, such that near theoretical densification (99.9%) could be achieved for ZrB2-18 wt.% SiC-5 wt.% TiSi2 composites after SPS at 1600 degrees C for 10 min at 50 MPa. Use of innovative multi stage sintering (MSS) route, which involved holding the samples at lower (intermediate) temperatures for some time before holding at the final temperature, while keeping the net holding time to 10 min, allowed attainment of full densification of ZrB2-18 wt.% SiC-2.5 wt.% TiSi2 at a still lower final temperature of 1500 degrees C at 30 MPa. TEM observations, which revealed the presence of anisotropic ZrB2 grains with faceted grain boundaries and TiSi2 at the intergranular regions, suggested the occurrence of liquid phase sintering in the presence of TiSi2. No additional phase was detected in XRD as well as TEM, which confirmed the absence of any sintering reaction. The as developed composites possessed an excellent combination of Vickers hardness and indentation toughness, both of which increased with increase in TiSi2 content, such that the ZrBi2-18 wt.% SiC-5 wt.% TiSi2 (SPS processed at 1600 degrees C) possessed hardness of similar to 20 GPa and indentation toughness of similar to 5 MPa m(1/2). The use of MSS SPS at 1500 degrees C for ZrBi2-18 wt.% SiC-2.5 wt.% TiSi2 composite resulted in improvement in hardness of up to similar to 27 GPa and attainment of high flexural strength of similar to 455 MPa. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.
Resumo:
Dynamic compression tests were performed by means of a Split Hopkinson Pressure Bar (SHPB). Test materials were 2124Al alloys reinforced with 17% volume fraction of 3, 13 and 37 μm SiC particles, respectively. Under strain rate ε = 2100 l/s, SiC particles have a strong effect on σ0.2 of the composites and the σ0.2 increases with different SiC particle size in the following order: 2124Al-alloy → 124Al/SiCp (37 μm) → 2124Al/SiCp (13 μm) → 2124Al/SiCp (3 μm), and the strain hardening of the composites depends mainly on the strain hardening of matrix, 2124A1 alloy. The results of dimensional analysis present that the flow stress of these composites not only depends on the property of reinforcement and matrix but also relates to the microstructure scale, matrix grain size, reinforcement size, the distance between reinforcements and dislocations in matrix. The normalized flow stress here is a function of inverse power of the edge-edge particle spacing, dislocation density and matrix grain size. Close-up observation shows that, in the composite containing SiC particles (3 μm), localized deformation formed readily comparing with other materials under the same loading condition. Microscopic observations indicate that different plastic flow patterns occur within the matrix due to the presence of hard particles with different sizes.
Resumo:
Nanoindentation tests were carried out to investigate certain elastic properties of Al2O3/SiCp composites at microscopic scales (nm up to mu m) and under ultra-low loads from 3 mN to 250 mN, with special attention paid to effects caused by SiC particles and pores. The measured Young's modulus depends on the volume fraction of SiC particles and on the composite porosity and it can compare with that of alumina. The Young's modulus exhibits large scatters at small penetrations, but it tends to be constant with lesser dispersion as the indentation depth increases. Further analysis indicated that the scatter results from specific microstructural heterogeneities. The measured Young's moduli are in agreement with predictions, provided the actual role of the microstructure is taken into account. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
<正> The SiCw/6061Al composites were fabricated by squeeze casting method. Varia-tions of thermal residual stresses with quenching temperature, cooling manner, aging time and thethermal-cold cycle process in thin specimens,and the distributions of thermal residual stresses alongthe distances from the surface and changes with heating temperatnres in thick specimens were stud-ied by means of X-ray diffraction (XRD). The effects of residual stresses on the mierostructure, di-mensional stability and age-hardening behavior were studied by SEM, TEM observations, and tensiletest. The results showed that there existed macrostress, microstress and thermal mismatch stress inSiCw/Al compo-site,and the presence of microstress and thermal mismatch stress has no influenceon the measurement of macrostress, but the macrostress can affect the measured value of thermalmismatch stress. Thermal res dual stress induced during the composite fabrication process, will be further in-creased when the composite were subjected to the e
Resumo:
In this paper, multi-hole cooling is studied for an oxide/oxide ceramic specimen with normal injection holes and for a SiC/SiC ceramic specimen with oblique injection holes. A special purpose heat transfer tunnel was designed and built, which can provide a wide range of Reynolds numbers (10(5)similar to 10(7)) and a large temperature ratio of the primary flow to the coolant (up to 2.5). Cooling effectiveness determined by the measured surface temperature for the two types of ceramic specimens is investigated. It is found that the multi-hole cooling system for both specimens has a high cooling efficiency and it is higher for the SiC/SiC specimen than for the oxide/oxide specimen. Effects on the cooling effectiveness of parameters including blowing ratio, Reynolds number and temperature ratio, are studied. In addition, profiles of the mean velocity and temperature above the cooling surface are measured to provide further understanding of the cooling process. Duplication of the key parameters for multi-hole cooling, for a representative combustor flow condition (without radiation effects), is achieved with parameter scaling and the results show the high efficiency of multi-hole cooling for the oblique hole, SiC/SiC specimen. (C) 2008 Elsevier Ltd. All rights reserved.