981 resultados para aerobic power
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
There is little information on Caribbean soccer players. Thus, the aim this study was to descriptive and to compare the anthropometric, motor and aerobic fitness profile between Trinidad and Tobago team professional and junior soccer players. Twenty six soccer players were evaluated (14 professional and 12 junior): anthropometric (height, body mass, BMI, body fat percent), flexibility (sit and reach), velocity (30 m), explosive strength (horizontal and vertical jump), anaerobic power (maximum, mean and minimum power, index of fatigue) and maximum aerobic power. Student Test-t to independent sample was used in statistical analyzes, considering 5% of significance (p<0,05). Results of professional and junior players were, respectively: height (180,6 ± 8,1; 175,0 ± 6,9 cm), body mass (77,1 ± 7,5; 70,6 ± 8,7 kg); BMI (23,6 ± 1,5 / 23,0 ± 1,6 kgm 2 ); body fat (11,9 ± 1,7; 11,6 ± 1,2 %); sitting and reaching (24,9 ± 10,3; 24,9 ± 7,7 cm); velocity (30 m) (4,61 ± 0,14; 4,66 ± 0,15 s); horizontal jump (263,4 ± 14,9; 239,7 ± 12,1 cm); vertical jump (58,7 ± 4,3; 54,6 ± 6,6 cm); maximum power (7,9 ± 0,9; 6,6 ± 0,8 w∙kg-1 ); mean power (6,5 ± 0,7; 5,4 ± 0,9 w∙kg-1 ); minimum power (5,3 ± 0,7; 4,3 ± 1,1 w∙kg-1 ); index of fatigue (33,0 ± 7,9; 34,8 ± 12,8 %); aerobic power (55,0 ± 3,2; 57,2 ± 4,8 ml∙kg-1 ∙min-1 ). Professional players presented higher horizontal jump and maximum, mean and minimum anaerobic power in comparing to the junior players. The highest values of power tests for the lower limbs may be relationship to the longer time of practice in the modality of professional players, which can also indicate a higher level of specialization, which gives priority to the training of power (force and velocity).
Resumo:
The objective of this research was to verify the relationship between biological markers of performance of elite judo athletes and performance in different physical fitness tests. Twenty-one judo athletes were involved in the present observational and correlational study. Dermatoglyphic variables and the 2D:4D digit ratio were considered as biological markers, while the physical fitness variables analyzed were body fat, maximal strength, muscular power, the aerobic and anaerobic profile, and performance in specific tests. The statistics involved canonical correlations and a multivariate technique. A high and significant canonical correlation was observed between groups of variables, the first expressed by 1=0.999 (p<0.0001) and the second by 2=0.997 (p<0.001). It appears that, beyond height and body mass, total ridge count, pattern intensity for fingers and 2D:4D had more canonical loading. The physical fitness component of the first canonical variable incorporated, with high intensity were: the sum of skinfold thickness, the bench press onerepetition maximum (1RM), upper and lower body aerobic power. In the second canonical variable, physical fitness was composed of the squat 1RM, suspension time on the bar, the SJFT-index, and mean power during the upper body Wingate test. The data of this investigation showed the interdependence between biological markers of performance and physical fitness in high level judo athletes.
Resumo:
The purpose of this study was to determine the physiological, anthropometric, performance, and nutritional characteristics of the Brazil Canoe Polo National Team. Ten male canoe polo athletes (age 26.7 +/- 4.1 years) performed a battery of tests including assessments of anthropometric parameters, upper-body anaerobic power (Wingate), muscular strength, aerobic power, and nutritional profile. In addition, we characterized heart rate and plasma lactate responses and the temporal pattern of the effort/recovery during a simulated canoe polo match. The main results are as follows: body fat, 12.3 +/- 4.0%; upper-body peak and mean power, 6.8 +/- 0.5 and 4.7 +/- 0.4 W . kg(-1), respectively; 1-RM bench press, 99.1 +/- 11.7 kg; peak oxygen uptake, 44.3 +/- 5.8 mL . kg(-1) . min(-1); total energy intake, 42.8 +/- 8.6 kcal . kg(-1); protein, carbohydrate, and fat intakes, 1.9 +/- 0.1, 5.0 +/- 1.5, and 1.7 +/- 0.4 g . kg(-1), respectively; mean heart rate, 146 +/- 11 beats . min(-1); plasma lactate, 5.7 +/- 3.8 mmol . L-1 at half-time and 4.6 +/- 2.2 mmol . L-1 at the end of the match; effort time (relative to total match time), 93.1 +/- 3.0%; number of sprints, 9.6 +/- 4.4. The results of this study will assist coaches, trainers, and nutritionists in developing more adequate training programmes and dietary interventions for canoe polo athletes.
Resumo:
OBJECTIVE: The purpose of this study was to compare aerobic function [anaerobic threshold (%_VVO2-AT), respiratory compensation point (%_VVO2-RCP) and peak oxygen uptake (_VVO2peak)] between physically active patients with HIV/AIDS and matched controls and to examine associations between disease status, poor muscle strength, depression (as estimated by the profile of mood states questionnaire) and the aerobic performance of patients. METHODS: Progressive treadmill test data for %_VVO2-AT (V-slope method), RCP and (_VVO2peak) were compared between 39 male patients with HIV/AIDS (age 40.6¡1.4 years) and 28 male controls (age 44.4¡2.1 years) drawn from the same community and matched for habitual physical activity. Within-patient data were also examined in relation to CD4+ counts (nadir and current data) and peak isokinetic knee torque. RESULTS: AT, RCP and (_VVO2peak) values were generally similar for patients and controls.Within the patient sample, binary classification suggested that AT, RCP and (_VVO2peak) values were not associated with either the nadir or current CD4+ count, but treadmill test variables were positively associated with peak isokinetic knee torque. CONCLUSION: The aerobic performance of physically active patients with HIV/AIDS is generally well conserved. Nevertheless, poor muscle strength is observed in some HIV/AIDS patients, which is associated with lower anaerobic power and (_VVO2peak), suggesting the possibility of enhancing the aerobic performance of patients with weak muscles through appropriate muscle-strengthening activities.
Resumo:
[EN] Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the exercise model allows for an adequate oxygen delivery (blood flow x Ca,O2), with only a minor role of Pa,O2 per se, when Pa,O2 is more than 55 mmHg.
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.
Resumo:
PURPOSE We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. METHODS Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. RESULTS Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < -0.82). CONCLUSION Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.
Resumo:
Objective-Although physical activity is beneficial to health, people who exercise at high intensities throughout their lifetime may have increased cardiovascular risk. Aerobic exercise increases oxidative stress and may contribute to atherogenesis by augmented oxidation of plasma lipoproteins. The aim of this study was to examine the relationship between aerobic power and markers of oxidative stress, including the susceptibility of plasma to oxidation. Methods and results-Aerobic power was measured in 24 healthy men aged 29 9 years (mean +/- SD). Plasma was analysed from subjects of high aerobic power (HAP; VO(2)max, 64.6 +/- 6.1 ml/kg/min) and lower aerobic power (LAP;VO(2)max, 45.1 +/- 6.3 ml/kg/min) for total antioxidant capacity (TAC), malondialdehyde (MDA) and susceptibility to oxidation. Three measures were used to quantify plasma oxidizability: (1) lag time to conjugated diene formation (lag time); (2) change in absorbance at 234 nm and; (3) slope of the oxidation curve during propagation (slope). The HAP subjects had significantly lowerTAC (1.38 +/- 0.04 versus 1.42 +/- 0.06 TEAC units; P < 0.05), significantly higher change in absorbance (1.55 +/- 0.21 versus 1.36 +/- 0.17 arbitrary units; P < 0.05), but no difference in MDA (P = 0.6), compared to LAP subjects. There was a significant inverse association between TAC and slope (r = -0.49; P < 0.05). Lipoprotein profiles and daily intake of nutrients did not differ between the groups. Conclusions-These findings suggest that people with high aerobic power, due to extreme endurance exercise, have plasma with decreased antioxidant capacity and higher susceptibility to oxidation, which may increase their cardiovascular risk.
Resumo:
Objetivo: Este estudio describe los percentiles de la prueba de carrera de ida y vuelta 4 x 10 m en escolares de 9 a 17 años, de Bogotá, Colombia, pertenecientes al estudio Asociación de la fuerza prensil con manifestaciones tempranas de riesgo cardiovascular en niños colombianos. “FUPRECOL” Métodos: Estudio descriptivo transversal, en 2502 varones (42.7%) y 3349 mujeres (57,2%), de edades entre 9 y 17 años, pertenecientes a 24 instituciones educativas del sector oficial, en Bogotá, Colombia. La velocidad/agilidad se evaluó con la prueba de carrera de ida y vuelta 4 x 10 m (componente motor de la batería Fuprecol). Se calcularon los percentiles (P3, P10, P25, P50, P75, P90 y P97) y curvas centiles por el método LMS, según el sexo y la edad; y se realizó una comparación entre los valores de la velocidad-agilidad observados con estudios internacionales. Resultados: La edad promedio de los participantes fue 12,7 (DE 2,4) años. Al comparar por sexos, los varones presentan un mejor rendimiento en la prueba de carrera 4 x 10 m que las mujeres. En varones, el P50 osciló entre 11,9 segundos y 13,1 segundos, mientras que en mujeres el P50 osciló entre 14,3 segundos y 15,0 segundos. Al comparar los resultados de este estudio por grupos de edades y sexos, con trabajos internacionales, el P50 fue mayor al reportado en los trabajos de España, Portugal y el estudio HELENA realizado en 9 países europeos. Esta misma tendencia fue observada al comparar la media y la desviación estándar con escolares de Argentina, Francia y el mismo estudio HELENA. Conclusiones: Se registran percentiles de la prueba de carrera de ida y vuelta 4 x 10 m en función de las edades y el sexo. Estos valores pueden ser utilizados tanto para evaluar los niveles de aptitud de los estudiantes como para detectar a estudiantes cuyos niveles de condición física están por debajo de un mínimo saludable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objectives of this study were: a) to determine, in a cross-sectional manner, the effect of aerobic training on the peak oxygen uptake, the intensity at O2peak and the anaerobic threshold (AnT) during running and cycling; and b) to verify if the transference of the training effects are dependent on the analized type of exercise or physiological index. Eleven untrained males (UN), nine endurance cyclists (EC), seven endurance runners (ER), and nine triathletes (TR) were submitted, on separate days, to incremental tests until voluntary exhaustion on a mechanical braked cycle ergometer and on a treadmill. The values of O2peak (ml.kg-1.min-1) obtained in running and cycle ergometer (ER = 68.8 ± 6.3 and 62.0 ± 5.0; EC = 60.5 ± 8.0 and 67.6 ± 7.6; TR = 64.5 ± 4.8 and 61.0 ± 4.1; UN = 43.5 ± 7.0 and 36.7 ± 5.6; respectively) were higher in the group that presented specific training in the modality. The UN group presented the lower values of O2peak, regardless of the type of exercise. This same behavior was observed for the AnT (ml.kg-1.min-1) determined in running and cycle ergometer (ER = 56.8 ± 6.9 and 44.8 ± 5.7; EC = 51.2 ± 5.2 and 57.6 ± 7.1; TR = 56.5 ± 5.1 and 49.0 ± 4.8; UN = 33.2 ± 4.2 and 22.6 ± 3.7; respectively). It can be concluded that the transference of the training effects seems to be only partial, independently of the index (O2peak, IO2peak or AnT) or exercise type (running or cycling). In relation to the indices, the specificity of training seems to be less present in the O2peak than in the IO2peak and the AnT.
Resumo:
Purpose: Hyperactive platelets contribute to the thrombotic response in humans, and exercise transiently increases platelet function. Caffeine is routinely used by athletes as an ergogenic aid, but the combined effect of exercise and caffeine on platelet function has not been investigated. Methods: Twelve healthy males were randomly assigned to one of four groups and undertook four experimental trials of a high-intensity aerobic interval training (AIT) bout or rest with ingestion of caffeine (3 mg·kg-1) or placebo. AIT was 8 × 5 min at approximately 75% peak power output (approximately 80% V?O2peak) and 1-min recovery (approximately 40% peak power output, approximately 50% V?O2peak) intervals. Blood/urine was collected before, 60, and 90 min after capsule ingestion and analyzed for platelet aggregation/activation. Results: AIT increased platelet reactivity to adenosine diphosphate (placebo 30.3%, caffeine 13.4%, P < 0.05) and collagen (placebo 10.8%, caffeine 5.1%, P < 0.05) compared with rest. Exercise placebo increased adenosine diphosphate-induced aggregation 90 min postingestion compared with baseline (40.5%, P < 0.05), but the increase when exercise was combined with caffeine was small (6.6%). During the resting caffeine protocol, collagen-induced aggregation was reduced (-4.3%, P < 0.05). AIT increased expression of platelet activation marker PAC-1 with exercise placebo (P < 0.05) but not when combined with caffeine. Conclusion: A single bout of AIT increases platelet function, but caffeine ingestion (3 mg·kg) does not exacerbate platelet function at rest or in response to AIT. Our results provide new information showing caffeine at a dose that can elicit ergogenic effects on performance has no detrimental effect on platelet function and may have the potential to attenuate increases in platelet activation and aggregation when undertaking strenuous exercise.