959 resultados para ab initio electron theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equilibrium distances, binding energies, and vibrational frequencies have been obtained and compared with available experimental data. From binding-energy considerations, the atop and eclipsed sites seem to be the most favorable ones and thus a coadsorption picture may be suggested. Group-III metals exhibit a similar behavior and the same is true for Si(111) and Ge(111) surfaces when chemisorption is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase and ab initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a methodology for the computation of Raman scattering cross-sections and depolarization ratios within the Placzek Polarizability Theory is described. The polarizability gradients are derived from the values of the dynamic polarizabilities computed at the excitation frequencies using ab initio Linear Response Theory. A sample application of the computational program, at the HF, MP2 and CCSD levels of theory, is presented for H2O and NH3. The results show that high correlated levels of theory are needed to achieve good agreement with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic structure of ZrO2 and B2O3 was investigated in this work. New data under extreme conditions (T = 3100 K) was obtained for the liquid ZrO2 structure. A fractional number of boron was investigated for glassy structure of B2O3. It was shown that it is possible to obtain an agreement for the fractional number between NMR and DFT techniques using a suitable initial configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fluorescence excitation spectrum of formic acid monomer (HCOOH) , has been recorded in the 278-246 nm region and has been attributed to an n >7r* electron promotion in the anti conformer. The S^< S^ electronic origins of the HCOOH/HCOOD/DCOOH/DCOOD isotopomers were assigned to weak bands observed at 37431.5/37461.5/37445.5/37479.3 cm'''. From a band contour analysis of the 0°^ band of HCOOH, the rotational constants for the excited state were estimated: A'=1.8619, B'=0.4073, and C'=0.3730 cm'\ Four vibrational modes, 1/3(0=0), j/^(0-C=0) , J/g(C-H^^^) and i/,(0-H^yJ were observed in the spectrum. The activity of the antisymmetric aldehyde wagging and hydroxyl torsional modes in forming progressions is central to the analysis, leading to the conclusion that the two hydrogens are distorted from the molecular plane, 0-C=0, in the upper S. state. Ab initio calculations were performed at the 6-3 IG* SCF level using the Gaussian 86 system of programs to aid in the vibrational assignments. The computations show that the potential surface which describes the low frequency OH torsion (twisting motion) and the CH wagging (molecular inversion) motions is complex in the S^ excited electronic state. The OH and CH bonds were calculated to be twisted with respect to the 0-C=0 molecular frame by 63.66 and 4 5.76 degrees, respectively. The calculations predicted the existence of the second (syn) rotamer which is 338 cm'^ above the equilibrium configuration with OH and CH angles displaced from the plane by 47.91 and 41.32 degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le présent mémoire traite de la description du LaOFeAs, le premier matériau découvert de la famille des pnictures de fer, par la théorie de la fonctionnelle de la densité (DFT). Plus particulièrement, nous allons exposer l’état actuel de la recherche concernant ce matériau avant d’introduire rapidement la DFT. Ensuite, nous allons regarder comment se comparent les paramètres structuraux que nous allons calculer sous différentes phases par rapport aux résultats expérimentaux et avec les autres calculs DFT dans la littérature. Nous allons aussi étudier en détails la structure électronique du matériau sous ses différentes phases magnétiques et structurales. Nous emploierons donc les outils normalement utilisés pour mieux comprendre la structure électronique : structures de bandes, densités d’états, surfaces de Fermi, nesting au niveau de Fermi. Nous tirerons profit de la théorie des groupes afin de trouver les modes phononiques permis par la symétrie de notre cristal. De plus, nous étudierons le couplage électrons-phonons pour quelques modes. Enfin, nous regarderons l’effet de différentes fonctionnelles sur nos résultats pour voir à quel point ceux-ci sont sensibles à ce choix. Ainsi, nous utiliserons la LDA et la PBE, mais aussi la LDA+U et la PBE+U.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La présente thèse porte sur l'utilité de la théorie de la fonctionnelle de la densité dans le design de polymères pour applications photovoltaïques. L'étude porte d'abord sur le rôle des calculs théoriques pour la caractérisation des polymères dans le cadre de collaborations entre la théorie et l'expérience. La stabilité et les niveaux énergétiques de certaines molécules organiques sont étudiés avant et après la sulfuration de leurs groupements carbonyles, un procédé destiné à diminuer le band gap. Les propriétés de dynamique électronique, de séparation des porteurs de charges et de spectres de vibrations Raman sont également explorées dans un polymère à base de polycarbazole. Par la suite, l'utilité des calculs théoriques dans le design de polymères avant leurs synthèses est considérée. La théorie de la fonctionnelle de la densité est étudiée dans le cadre du modèle de Scharber afin de prédire l'efficacité des cellules solaires organiques. Une nouvelle méthode de design de polymères à faible band gaps, basée sur la forme structurale aromatique ou quinoide est également présentée, dont l'efficacité surpasse l'approche actuelle de donneur-accepteur. Ces études sont mises à profit dans l'exploration de l'espace moléculaire et plusieurs candidats de polymères aux propriétés électroniques intéressantes sont présentés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.