995 resultados para a2
Resumo:
Localization of human MHC class I-restricted T cell epitopes in the circumsporozoite (CS) protein of the human parasite Plasmodium falciparum is an important objective in the development of antimalarial vaccines. To this purpose, we synthesized a series of overlapping synthetic 20-mer peptides, spanning the entire sequence of the 7G8 CS molecule except for the central repeat B cell domain. The P.f.CS peptides were first tested for their ability to bind to the human MHC class I HLA-A2.1 molecule on T2, a human cell line. Subsequently, the use of a series of shorter peptide analogues allowed us to determine the optimal A2.1 binding sequence present in several of the 20-mers. Binding P.f.CS peptides were further tested for their capacity to activate PBL from HLA-A2.1+ immune donors living in a malaria-endemic area. Specific IFN-gamma production was detected in the supernatant of cultures of PBL from exposed individuals. Cytotoxic T cell lines and clones were derived from the PBL of one responder, and their activity was shown to be HLA-A2.1-restricted and specific for the peptide 334-342 of the CS protein. In addition, double transgenic HLA-A2.1 x human beta 2-microglobulin mice were immunized with peptide 1-10 of the CS protein. T cells derived from immune lymph nodes displayed a peptide-specific HLA-A2.1-restricted cytolytic activity after one in vitro stimulation.
Resumo:
ABSTRACT: INTRODUCTION: Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a circulating enzyme with pro-inflammatory and oxidative activities associated with cardiovascular disease and ischemic stroke. While high plasma Lp-PLA2 activity was reported as a risk factor for dementia in the Rotterdam study, no association between Lp-PLA2 mass and dementia or Alzheimer's disease (AD) was detected in the Framingham study. The objectives of the current study were to explore the relationship of plasma Lp-PLA2 activity with cognitive diagnoses (AD, amnestic mild cognitive impairment (aMCI), and cognitively healthy subjects), cardiovascular markers, cerebrospinal fluid (CSF) markers of AD, and apolipoprotein E (APOE) genotype. METHODS: Subjects with mild AD (n = 78) and aMCI (n = 59) were recruited from the Memory Clinic, University Hospital, Basel, Switzerland; cognitively healthy subjects (n = 66) were recruited from the community. Subjects underwent standardised medical, neurological, neuropsychological, imaging, genetic, blood and CSF evaluation. Differences in Lp-PLA2 activity between the cognitive diagnosis groups were tested with ANOVA and in multiple linear regression models with adjustment for covariates. Associations between Lp-PLA2 and markers of cardiovascular disease and AD were explored with Spearman's correlation coefficients. RESULTS: There was no significant difference in plasma Lp-PLA2 activity between AD (197.1 (standard deviation, SD 38.4) nmol/min/ml) and controls (195.4 (SD 41.9)). Gender, statin use and low-density lipoprotein cholesterol (LDL) were independently associated with Lp-PLA2 activity in multiple regression models. Lp-PLA2 activity was correlated with LDL and inversely correlated with high-density lipoprotein (HDL). AD subjects with APOE-ε4 had higher Lp-PLA2 activity (207.9 (SD 41.2)) than AD subjects lacking APOE-ε4 (181.6 (SD 26.0), P = 0.003) although this was attenuated by adjustment for LDL (P = 0.09). No strong correlations were detected for Lp-PLA2 activity and CSF markers of AD. CONCLUSION: Plasma Lp-PLA2 was not associated with a diagnosis of AD or aMCI in this cross-sectional study. The main clinical correlates of Lp-PLA2 activity in AD, aMCI and cognitively healthy subjects were variables associated with lipid metabolism.
Resumo:
BACKGROUND AND OBJECTIVES: Donor cytomegalovirus seropositivity was reported to improve leukemia outcomes in HLA-A2 identical hematopoietic cell transplant (HCT) recipients, due to a possible cross-reactivity of donor HLA-A2-restricted CMV-specific T cells with minor histocompatibility (H) antigen of recipient cells. This study analyzed the role of donor CMV serostatus and HLA-A2 status on leukemia outcomes in a large population of HLA-identical HCT recipients. DESIGN AND METHODS: Leukemia patients transplanted between 1992 and 2003 at the Fred Hutchinson Cancer Research Center were categorized as standard risk [leukemia first remission, chronic myeloid leukemia in chronic phase (CML-CP)] and high risk (advanced disease) patients. Time-to-event analysis was used to evaluate the risk of relapse and death associated with HLA-A2 status and donor CMV serostatus. RESULTS: In standard risk patients, acute leukemia (p<0.001) and sex mismatch (female to male, p=0.004)) independently increased the risk of death, while acute leukemia increased the risk of relapse (p<0.001). In high risk patients acute leukemia (p=0.01), recipient age > or = 40 (p=0.005) and herpes simplex virus (HSV) seropositivity (p<0.001) significantly increased the risk death; HSV seropositivity (p=0.006) increased the risk of relapse. Donor CMV serostatus had no significant effect on mortality or relapse in any HLA group. INTERPRETATION AND CONCLUSION: This epidemiological study did not confirm the previously reported effect of donor CMV serostatus on the outcomes of leukemia in HLA-A2-identical HCT recipients. Addressing the question of cross-reactivity of HLA-A2-restricted CMV-specific T cells with minor H antigens in a clinical study would require knowledge of the patient's minor H antigen genotype. However, because of the unbalanced distribution of HLA-A2-restricted minor H antigens in the population and their incomplete identification, this question might be more appropriately evaluated in in vitro experiments than in a clinical study.
Resumo:
Peptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase. Studying melanoma cell lines derived from multiple patients, we reveal a surprisingly high level of presentation of tyrosinase-derived complexes and moderate to very low expression of complexes derived from other Ags. No correlation between Ag presentation and mRNA expression was found; however, protein stability may play a major role. These results provide new insights into the characteristics of Ag presentation and are particularly important when such targets are being considered for immunotherapy. These results may shed new light on relationships between Ag presentation and immune response to cancer Ags.
Resumo:
Thirty-five HLA-A2(+) patients with completely resected stage I-III melanoma were vaccinated multiple times over 6 months with a modified melanoma peptide, gp100(209-2M), emulsified in Montanide adjuvant. Direct ex vivo gp100(209-2M) tetramer analysis of pre- and postvaccine peripheral blood mononuclear cells (PBMCs) demonstrated significant increases in the frequency of tetramer(+) CD8(+) T cells after immunization for 33 of 35 evaluable patients (median, 0.36%; range, 0.05-8.9%). Ex vivo IFN-gamma cytokine flow cytometry analysis of postvaccine PBMCs after brief gp100(209-2M) in vitro activation showed that for all of the patients studied tetramer(+) CD8(+) T cells produced IFN-gamma; however, some patients had significant numbers of tetramer(+) IFN-gamma(-) CD8(+)T cells suggesting functional anergy. Additionally, 8 day gp100(209-2M) in vitro stimulation (IVS) of pre- and postvaccine PBMCs resulted in significant expansion of tetramer(+) CD8(+) T cells from postvaccine cells for 34 patients, and these IVS tetramer(+) CD8(+) T cells were functionally responsive by IFN-gamma cytokine flow cytometry analysis after restimulation with either native or modified gp100 peptide. However, correlated functional and phenotype analysis of IVS-expanded postvaccine CD8(+) T cells demonstrated the proliferation of functionally anergic gp100(209-2M)- tetramer(+) CD8(+) T cells in several patients and also indicated interpatient variability of gp100(209-2M) stimulated T-cell proliferation. Flow cytometry analysis of cryopreserved postvaccine PBMCs from representative patients showed that the majority of tetramer(+) CD8+ T cells (78.1 +/- 4.2%) had either an "effector" (CD45 RA(+)/CCR7(-)) or an "effector-memory" phenotype (CD45RA(-)/CCR7(-)). Notably, analysis of PBMCs collected 12-24 months after vaccine therapy demonstrated the durable presence of gp100(209-2M)-specific memory CD8(+) T cells with high proliferation potential. Overall, this report demonstrates that after vaccination with a MHC class I-restricted melanoma peptide, resected nonmetastatic melanoma patients can mount a significant antigen-specific CD8(+) T-cell immune response with a functionally intact memory component. The data further support the combined use of tetramer binding and functional assays in correlated ex vivo and IVS settings as a standard for immunomonitoring of cancer vaccine patients.
Resumo:
The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
We have determined high-resolution crystal structures of the complexes of HLA-A2 molecules with two modified immunodominant peptides from the melanoma tumor-associated protein Melan-A/Melanoma Ag recognized by T cells-1. The two peptides, a decamer and nonamer with overlapping sequences (ELAGIGILTV and ALGIGILTV), are modified in the second residue to increase their affinity for HLA-A2. The modified decamer is more immunogenic than the natural peptide and a candidate for peptide-based melanoma immunotherapy. The crystal structures at 1.8 and 2.15 A resolution define the differences in binding modes of the modified peptides, including different clusters of water molecules that appear to stabilize the peptide-HLA interaction. The structures suggest both how the wild-type peptides would bind and how three categories of cytotoxic T lymphocytes with differing fine specificity might recognize the two peptides.
Resumo:
In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.
Resumo:
1 kartta :, vär. ;, 50,6 x 43 cm, lehti 58 x 50,3 cm
Resumo:
Water and saline intake is controlled by several mechanisms activated during dehydration. Some mechanisms, such as the production of angiotensin II and unloading of cardiovascular receptors, activate both behaviors, while others, such as the increase in blood osmolality or sodium concentration, activate water, but inhibit saline intake. Aldosterone probably activates only saline intake. Clonidine, an a2-adrenergic agonist, inhibits water and saline intake induced by these mechanisms. One model to describe the interactions between these multiple mechanisms is a wire-block diagram, where the brain circuit that controls each intake is represented by a summing point of its respective inhibiting and activating factors. The a2-adrenoceptors constitute an inhibitory factor common to both summing points
Resumo:
Nicotinic acetylcholine receptors (nAChRs) are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses
Resumo:
To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New World’s N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Microbiología) UANL