575 resultados para ZRO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of Ti02 in single and two··phase regions of ihe system ZrOrTi02 has heen measured lIsing solid state cells based on yttria··doped tho ria (YDT) as the solid electrolyte at 1373 K. The cells used can be represented as: Pt, Tio.07PtO.Y3 + Zrj.,Tix0 2 / YDT / Ti02 + Tio.07Pto.93, Pt Pt, Tio.07Pto.93 + ZrJ.xTix02 + ZrTi04 / YDT / Ti02+ Tio.07PtO.93, Pt In each cell the composition of Pt-Ti alloy was identical at hoth electrodes. The emf of the cell is therefore directly related to the activity of Ti02 in oxide phase or oxide phase mixture: aTiO~ :;: cxp (-4FE/RT). The activity coefficient of Ti02 in th~ zirconia-rich solid solution with monoclinic structure (CUl2 2" XTi02 2" 0) can be expressed as:In the zirconia-rich solid solution with tetragonal structure (0.085 2" X ri02 2" 0.03), the activity coefficient is given by:In YTi02 (± 0.012) = 2.354 (1-XTiO? )2 +0.064 The standard Gibbs energy of formation of ZrTi04 is -5650 (± 200) J/mol at 1373 K .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Densification characteristics of amorphous ZrO2-40 mol% Al2O3 powder with 3 to 15 mu m nominal particle size range, produced by spray pyrolysis, have been studied by conducting hot pressing experiments at 573, 723 and 873 K with uniaxial pressures of 250, 500 and 750 MPa. Most of the increase in relative density from the starting value of similar to 40% occurred during loading up to the desired pressure. The increments in density during 1 hour constant pressure dwells were less than 4% at all temperatures and pressure. Inter-particle bonding was not observed at 573 K. Correlation between the results with a viscous sintering model for hot pressing is not satisfactory for describing the behavior as normal viscous sintering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless Ni-Cu-P-ZRO(2) composite coating was successfully obtained on low carbon steel matrix by electroless plating technique. Coatings with different compositions were obtained by varying copper as ternary metal and nano sized zirconium oxide particles so as to obtain elevated corrosion resistant Ni-P coating. Microstructure, crystal structure and composition of deposits were analyzed by SEM, EDX and XRD techniques. The corrosion behavior of the deposits was studied by anodic polarization, Tafel plots and electrochemical impedance spectroscopy (EIS) in 3.5% sodium chloride solution. The ZRO(2) incorporated Ni-P coating showed higher corrosion resistance than plain Ni-P. The introduction of copper metal into Ni-P-ZRO(2) enhanced the protection ability against corrosion. The influence of copper metal and nanoparticles on microhardness of coatings was evaluated. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new two-step synthesis of ZrO2-MCM nanocomposites using the gel combustion technique was accomplished; the resulting material had a high-surface area and showed very high adsorption activity. The deposition of 25 nm ZrO2 particles over MCM was achieved using gel combustion technique with glycine as a fuel, and the formation of nanocomposites was confirmed using transmission electron microscopy. The composites were also characterized by XRD, SEM, FTIR and N2 adsorption-desorption analysis. The nanocomposites were tested for the adsorption of cationic dyes. High rates of adsorption and large dye uptake were observed over the nanocomposites. The rate of adsorption over the nanocomposites was higher than that observed for physical ZrO2-MCM mixtures and commercial activated carbon. The nanocomposite with 10 wt % ZrO2 showed the highest rate of adsorption owing to the synergistic effects of ZrO2 surface groups, smaller particle size, fine dispersion and high-surface area of the composite. (c) 2012 American Institute of Chemical Engineers AIChE J, 58: 29872996, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size similar to 10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at similar to 365 and similar to 390 nm. Both the samples show shoulder peak at 420 nm, along with four weak emission bands at similar to 484, similar to 528, similar to 614 and similar to 726 nm. TL studies were carried out pre-irradiating samples with gamma-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 degrees C is recorded which can be ascribed to deep traps. With increase in gamma radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel crystalline tetragonal ZrO2: Eu3+ phosphors were prepared by a facile and efficient low temperature solution combustion method at 400 +/- 10 degrees C using oxalyl dihydrazide (ODH) as fuel. The powder X-ray diffraction patterns and Rietveld confinement of as formed ZrO2: Eu3+ (1-11 mol%) confirmed the presence of body centered tetragonal phase. The crystallite size estimated from Scherrer's and W-H plots was found to be in the range of 7-17 nm. These results were in good agreement with transmission electron microscopy studies. The calculated microstrain in most of the planes indicated the presence of tensile stress along various planes of the particles. The observed space group (P4(2)/nmc) revealed the presence of cations in the 2b positions (0.75, 0.25, 0.25) and the anions in the 4d positions (0.25, 0.25, 0.45). The optical band gap energies estimated from Wood and Tauc's relation was found to be in the range 4.3-4.7 eV. Photoluminescence (PL) emission was recorded under 394 and 464 nm excitation shows an intense emission peak at 605 nm along with other emission peaks at 537, 592, 605 and 713 nm. These emission peaks were attributed to the transition of D-5(0) -> F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. The high ratio of Intensity of (D-5(0) -> F-7(2)) and (D-5(0) -> F-7(1)) infers that Eu3+ occupies sites with a low symmetry and without an inversion center. CIE color coordinates indicated the red regions which could meet the needs of illumination devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study involves synthesis of a series of Tb3+ doped ZrO2 nanophosphors by solution combustion method using oxalyl dihydrazide as fuel. The as-formed ZrO2:Tb3+ nanophosphors having different concentrations of Tb3+ (1-11 mol%) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible spectroscopic techniques and the materials were subjected to photoluminescence and photocatalytic dye decolorization studies. The PXRD analysis indicates the formation of tetragonal symmetry up to 5 mol% concentration of Tb3+. Further increase in Tb3+ concentration has lead to cubic phase formation and the same was confirmed by Rietveld refinement analysis. SEM images revealed that material was highly porous in nature comprising of large voids and cracks with irregular morphology. TEM and SAED images clearly confirm the formation of high quality tetragonal nanocrystals. The emissive properties of nanophosphors were found to be dependent on Tb3+ dopant concentration. The green emission of the material was turned to white emission with the increase of Tb3+ ion concentration. The photocatalytic activities of these nanophosphors were probed for the decolorization of Congo red under UV and Sunlight irradiation. All the photocatalysts showed enhanced activity under UV light compared to Sunlight. The photocatalyst with 7 mol% Tb3+ showed enhanced activity attributed to effective separation of charge carriers due to phase transformation from tetragonal to cubic. The influence of crystallite size and PL on charge carrier trapping-recombination dynamics was investigated. The study successfully demonstrates synthesis of tetragonal and cubic ZrO2:Tb3+ green nanophosphors with superior photoluminescence and photocatalytic activities. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic ZrO2: Fe3+ (0.5-4 mol%) nanoparticles (NPs) were synthesized via bin-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2 mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. The recycling catalytic ability of the ZrO2: Fe3+ (2 mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-insulator-metal (MIM) capacitors for DRAM applications have been realised using stacked TiO2-ZrO2 (TiO2/ZrO2 and ZrO2/TiO2) and Si-doped ZrO2 (TiO2/Si-doped ZrO2) dielectrics. High capacitance densities (> 42 fF/mu m(2)), low leakage current densities (< 5 x 10(-7) A/cm(2) at -1 V), and sub-nm EOT (< 0.8 nm) have been achieved. The effects of constant voltage stress on the device characteristics is studied. The structural analysis of the samples is performed by X-ray diffraction measurements, and this is correlated to the electrical characteristics of the devices. The surface chemical states of the films are analyzed through X-ray photoelectron spectroscopy measurements. The doped-dielectric stack (TiO2/Si-doped ZrO2) helps to reduce leakage current density and improve reliability, with a marginal reduction in capacitance density; compared to their undoped counterparts (TiO2/ZrO2 and ZrO2/TiO2). We compare the device performance of the fabricated capacitors with other stacked high-k MIM capacitors reported in recent literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-kappa gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, similar to 35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 degrees C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 angstrom, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), dielectric constant (kappa) and oxide trapped charges (Q(ot)) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37V, 15 and 2 x 10(-11) C, respectively. The small flat band voltage 0.37V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 x 10(-9)A/cm(2) at 1V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics. (C) 2016 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用醇热法水解氧氯化锆(ZrOCl2·8H2O)制备ZrO2溶胶,提拉法涂膜。采用粘度、粒度分布、折射率、IR、DSC、AFM等测试手段对溶胶和薄膜性能进行表征。结果表明,ZrO2溶胶颗粒的平均粒径为18.9nm,薄膜经300℃热处理后折射率可高达1.95,膜层表面均匀平整,表面平均粗糙度仅为0.561nm,膜层的激光损伤阈值为14J/cm^2(1064nm,1ns)。