940 resultados para ZONE-ELECTROPHORESIS
Resumo:
Fluoroacetate is a highly toxic species naturally found in plants and in commercial products (compound 1080) for population control of several undesirable animal species. However, it is non-selective and toxic to many other animals including humans, and thus its detection is very important for forensic purposes. This paper presents a sensitive and fast method for the determination of fluoroacetate in blood serum using capillary electrophoresis with capacitively coupled contactless conductivity detection. Serum blood samples were treated with ethanol to remove proteins. The samples were analyzed in BGE containing 15 mmol/L histidine and 30 mmol/L gluconic acid (pH 3.85). The calibration curve was linear up to 75 mu mol/L (R(2) = 0.9995 for N = 12). The detection limit in the blood serum was 0.15 mg/kg, which is smaller than the lethal dose for humans and other animals. Fluoride, a metabolite of the fluoroacetate defluorination, could also be detected for levels greater than 20 mu mol/L, when polybrene was used for reversion of the EOF. CTAB and didecyldimethylammonium bromide are not useful for this task because of the severe reduction of the fluoride level. However, no interference was observed for fluoroacetate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) for determination of two important phosphodiesterase type-5 inhibitors (sildenafil and vardenafil) is introduced. The background electrolyte (BGE) consisted of an aqueous solution of 500 mmol L-1 acetic acid, and the capillary was previously treated with polybrene solution to prevent cationic analytes from adsorbing onto the inner surface. Although the analytes migrate in the counter flow, the total time is short. An instrument with two C4D detectors allowed a seamless transition from a fast method (less than one minute) but of low-efficiency using the first detector to a more efficient method using the second detector. The analysis of commercial tablets showed no significant difference between CE-C4D and HPLC methods. Conductivity detection is a well-known low selectivity detection scheme, which in conjunction with the high mobility of the co-ion in the BGE (hydroxonium) allows one to predict that other cationic analogues of sildenafil can also be detected. This is an interesting feature given the increasing number of compounds in this class. © 2013 The Royal Society of Chemistry.
Resumo:
Serum protein electrophoresis is used as a screening test for monoclonal gammopathies. Here, we present a case of a high-concentration monoclonal immunoglobulin (M-protein) that was missed by serum protein electrophoresis on a Capillarys 2 capillary zone electrophoresis system. The aim of our study was to identify the reason for the failure of the system to detect the M-protein.
Resumo:
Capillary zone electrophoresis (CZE) with a dynamic double coating based on the new CEofix reagents is shown to provide high-resolution separations of serum transferrin (Tf) isoforms, a prerequisite for the monitoring of unusual and complex Tf patterns, including those seen with genetic variants and disorders of glycosylation. A 50 microm I.D. fused-silica capillary of 60 cm total length, an applied voltage of 20 kV and a capillary temperature of 30 degrees C results in 15 min CZE runs of high assay precision and thus provides a robust approach for the determination of carbohydrate-deficient transferrin (CDT, sum of asialo-Tf and disialo-Tf in relation to total Tf) in human serum. Except for selected samples of patients with severe liver diseases and sera with high levels of paraproteins, interference-free Tf patterns are detected. Compared with the use of the previous CEofix reagents for CDT under the same instrumental conditions, the resolution between disialo-Tf and trisialo-Tf is significantly higher (1.7 versus 1.4). The CDT levels of reference and patient sera are comparable, suggesting that the new assay can be applied for screening and confirmation analyses. The high-resolution CZE assay represents an attractive alternative to HPLC and can be regarded as a candidate of a reference method for CDT.
Resumo:
The use of capillary zone electrophoresis (CZE) with indirect absorbance detection for the analysis of ethyl sulfate (EtS) in serum and urine was investigated. EtS is a direct metabolite of ethanol employed as marker for recent alcohol consumption. Fused-silica capillaries of 60 cm total length were either coated with cetyltrimethylammonium bromide (CTAB, 50 microm I.D. capillary) or poly(diallyldimethylammonium chloride) (PDADMAC, 100 microm I.D. capillary) to allow CZE analyses to be performed with reversed polarity. At pH 2.2 with a maleic acid/phthalic acid background electrolyte, both approaches provided reliable EtS serum levels down to 0.2 mg L(-1) (1.6 microM) for the analysis of solid-phase extracts that were prepared after chloride precipitation. Analysis of urines diluted to a conductivity of 5 S m(-1) and analyzed in the two capillary formats resulted in limits of quantification (LOQs) of 2 and 1 mg L(-1), respectively. With urines adjusted to 10 S m(-1) via dilution or condensation, an LOQ of 0.6 mg L(-1) (4.8 microM) was obtained in the CTAB coated capillary whereas in the PDADMAC-coated capillary of equal length not all matrix components were resolved from EtS. The developed assays are robust and suitable to monitor EtS in samples of individuals who consumed as little as one standard drink of an alcoholic beverage containing about 14 g of ethanol.
Resumo:
Capillary zone electrophoresis (CZE) in fused-silica capillaries is an effective analytical approach for the separation and determination of the transferrin (Tf) isoforms and thus carbohydrate-deficient transferrin (CDT) in human serum. Sera of patients with progressed liver cirrhosis are prone to interferences in the beta region which prevent the proper determination of CDT by CZE without additional sample preparation. Efforts to identify, reduce or even eliminate these interferences have been undertaken. Data obtained by ultrafiltration, affinity subtraction procedures using protein A, protein L and antibodies against immunoglobulins or Tf, and immunopurification of Tf suggest that the interferences in the patient sera are caused by increased levels of IgA and IgM and are best eliminated by immunopurification. Avian IgY antibody spin column immunocapture of serum Tf followed by CZE analysis of the stripped and concentrated fraction is shown to provide an attractive approach for CDT monitoring in sera with beta region interferences.
Resumo:
Data obtained with two CZE assays for determining carbohydrate-deficient transferrin (CDT) in human serum under routine conditions, the CAPILLARYS CDT and the high-resolution CEofix (HR-CEofix) CDT methods, are in agreement with patient sera that do not exhibit interferences, high trisialo-transferrin (Tf) levels or genetic variants. HR-CEofix CDT levels are somewhat higher compared to those obtained with the CAPILLARYS method and this bias corresponds to the difference of the upper reference values of the two assays. The lower resolution between disialo-Tf and trisialo-Tf observed in the CAPILLARYS system (mean: 1.24) compared to HR-CEofix (mean: 1.74) is believed to be the key for this difference. For critical sera with high trisialo-Tf levels, genetic variants, or certain interferences in the beta-region, the HR-CEofix approach is demonstrated to perform better than CAPILLARYS. However, the determination of CDT with the HR-CEofix method can also be hampered with interferences. Results with disialo-Tf values larger than 3% in the absence of asialo-Tf should be evaluated with immunosubtraction of Tf and possibly also confirmed with another CZE method or by HPLC. Furthermore, data gathered with the N Latex CDT direct immunonephelometric assay suggest that this assay can be used for screening purposes. To reduce the number of false negative results, CDT data above 2.0% should be confirmed using a separation method.
Resumo:
Ethyl glucuronide (EtG) is a marker of recent alcohol consumption. For the optimization of the analysis of EtG by CZE with indirect absorbance detection, the use of capillaries with permanent and dynamic wall coatings, the composition of the BGE, and various sample preparation procedures, including dilution with water, ultrafiltration, protein precipitation, and SPE, were investigated. Two validated screening assays for the determination of EtG in human serum, a CZE-based approach and an enzyme immunoassay (EIA), are described. The CZE assay uses a coated capillary, 2,4-dimethylglutaric acid as an internal standard, and a pH 4.65 BGE comprising 9 mM nicotinic acid, epsilon-aminocaproic acid and 10% v/v ACN. Proteins are removed via precipitation with ACN prior to analysis and the LOQ is 0.50 mg/L. The EIA is based upon commercial reagents which are promoted for the determination of urinary EtG. Krebs-Ringer solution containing 5% BSA is used as a calibration matrix. All samples are ultrafiltered prior to analysis of the ultrafiltrate on a Mira Plus analyzer. Assay calibration ranged between 0 and 2 mg/L and the upper reference limit was determined to be 0.05 mg/L. Both assays proved to be suitable for the analysis of samples from different individuals. For EtG levels above 0.50 mg/L, good agreement was observed for the comparison of the results of the two methods.
Resumo:
The performance of high-resolution CZE for determination of carbohydrate-deficient transferrin (CDT) in human serum based on internal and external quality data gathered over a 10-year period is reported. The assay comprises mixing of serum with a Fe(III) ion-containing solution prior to analysis of the iron saturated mixture in a dynamically double-coated capillary using a commercial buffer at alkaline pH. CDT values obtained with a human serum of a healthy individual and commercial quality control sera are shown to vary less than 10%. Values of a control from a specific lot were found to slowly decrease as function of time (less than 10% per year). Furthermore, due to unknown reasons, gradual changes in the monitored pattern around pentasialo-transferrin were detected, which limit the use of commercial control sera of the same lot to less than 2 years. Analysis of external quality control sera revealed correct classification of the samples over the entire 10-year period. Data obtained compare well with those of HPLC and CZE assays of other laboratories. The data gathered over a 10-year period demonstrate the robustness of the high-resolution CZE assay. This is the first account of a CZE-based CDT assay with complete internal and external quality assessment over an extended time period.
Resumo:
High-resolution capillary zone electrophoresis in the routine arena with stringent quality assurance is employed for the determination of carbohydrate-deficient transferrin in human serum. The assay comprises mixing of human serum with a Fe(III) -containing solution prior to analysis of the iron-saturated mixture in a dynamically double-coated capillary using a commercial buffer at alkaline pH. In contrast to other assays, it provides sufficient resolution for proper recognition of genetic transferrin variants. Analysis of 7290 patient sera revealed 166 isoform patterns that could be assigned to genetic variants, namely, 109 BC, 53 CD, one BD and three CC variants. Several subtypes of transferrin D can be distinguished as they have large enough differences in pI values. Subtypes of transferrin C and B cannot be resolved. However, analysis of the detection time ratios of tetrasialo isoforms of transferrin BC and transferrin CD variants revealed multimodal frequency histograms, indicating the presence of subtypes of transferrin C, B and D. The data gathered over 11 years demonstrate the robustness of the high-resolution capillary zone electrophoresis assay. This is the first account of a capillary zone electrophoresis based carbohydrate-deficient transferrin assay with a broad overview on transferrin isoform patterns associated with genetic transferrin variants.
Resumo:
CZE-based assays for carbohydrate-deficient transferrin (CDT) in which serum is mixed with an Fe(III) ion-containing solution prior to analysis are effective approaches for the determination of CDT in patient samples. Sera of patients with progressed diseases, however, are prone to interferences comigrating with transferrin (Tf) that prevent the proper determination of CDT by CZE in these samples. The need of a simple and economic approach to immunoextract Tf from human serum prompted us to investigate the use of a laboratory-made anti-Tf spin column containing polyclonal rabbit anti-human Tf antibodies linked to Sepharose 4 Fast Flow beads. This article reports extraction column manufacturing and column characterization with sera having normal and elevated CDT levels. The developed procedure was applied to a number of relevant hepatology and dialysis patient samples and could thereby be shown to represent an effective method for extraction and concentration of all Tf isoforms. Furthermore, lipemic sera were delipidated using a mixture of diisopropyl ether and butanol prior to immunoextraction. CDT could unambiguously be determined in all pretreated samples.
Resumo:
The feasibility of employing classical electrophoresis theory to determine the net charge (valence) of proteins by capillary zone electrophoresis is illustrated in this paper. An outline of a procedure to facilitate the interpretation of mobility measurements is demonstrated by its application to a published mobility measurement for Staphylococcal nuclease at pH 8.9 that had been obtained by capillary zone electrophoresis. The significantly higher valence of +7.5 (cf. 5.6 from the same series of measurements) that has been reported on the basis of a charge ladder approach for charge determination signifies the likelihood that the latter generic approach may be prone to error arising from nonconformity of the experimental system with an inherent assumption that chemical modification or mutation of amino acid residues has no effect on the overall three-dimensional size and shape of the protein. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Poly(Nε-trifluoroacetyl-l-lysine) was used as a model solute to investigate the potential of nonaqueous capillary electrophoresis (NACE) for the characterization of synthetic organic polymers. The information obtained by NACE was compared to that derived from size exclusion chromatography (SEC) experiments, and the two techniques were found to be complimentary for polymer characterization. On one hand, NACE permitted (i) the separation of oligomers according to their molar mass and (ii) the separation of the polymers according to the nature of the end groups. On the other hand, SEC experiments were used for the characterization of the molar mass distribution for higher molar masses. Due to the tendency of the solutes (polypeptides) to adsorb onto the fused-silica capillary wall, careful attention was paid to the rinsing procedure of the capillary between runs in order to keep the capillary surface clean. For that purpose, the use of electrophoretic desorption under denaturating conditions was very effective. Optimization of the separation was performed by studying (i) the influence of the proportion of methanol in a methanol/acetonitrile mixture and (ii) the influence of acetic acid concentration in the background electrolyte. Highly resolved separation of the oligomers (up to a degree of polymerization n of ∼50) was obtained by adding trifluoroacetic acid to the electrolyte. Important information concerning the polymer conformations could be obtained from the mobility data. Two different plots relating the effective mobility data to the degree of polymerization were proposed for monitoring the changes in polymer conformations as a function of the number of monomers.
Resumo:
The construction and evaluation of an on-column etched fused-silica porous junction for on-line coupling of capillary isoelectric focusing (CIEF) with capillary zone electrophoresis (CZE) are described. Where two separation columns were integrated on a single piece of fused-silica capillary through the etched similar to4 to 5-mm length porous junction along the capillary. The junction is easily prepared by etching a short section of the capillary wall with HF after removing the polyimide coating. The etched section becomes a porous glass membrane that allows only small ions related to the background electrolyte to pass through when high voltage is applied across the separation capillary. The primary advantages of this novel porous junction interface over previous designs (in which the interface is usually formed by fracturing the capillary followed by connecting the two capillaries with a section of microdialysis hollow fiber membrane) are no dead volume, simplicity, and ruggedness, which is particularly well suited for an on-line coupling capillary electrophoresis-based multiple dimensional separation system. The performance of the 2D CIEF-CZE system constructed by such an etched porous junction was evaluated by the analyses of protein mixtures.