881 resultados para Yersinia pseudotuberculosis Infections
Resumo:
Strains (105) of Yersinia pseudotuberculosis isolated in Brazil between 1982 and 1990 were bio-serotyped. They were also studied for plasmid profile, autoagglutination and calcium dependence at 37 degrees C, Congo red uptake, pyrazinamidase activity, esculin hydrolysis, salicin fermentation and drug sensitivity: 95.24% were biotype 2, serogroup O:3; 2.86% were biotype 1, serogroup O:1; and 1.90% were biotype 2, non-agglutinable. Plasmids were found in 77.14% of the strains (one in each strain). There was total correlation between the presence of the virulence plasmid and autoagglutination, calcium dependence at 37 degrees C and Congo red uptake. The esculin, salicin and pyrazinamidase tests were not efficient in differentiating pathogenic from non-pathogenic Y. pseudotuberculosis isolates. All strains were highly sensitive to the drugs used. These results indicate that Y. pseudotuberculosis is a potential pathogen for humans in Brazil, especially because the bio-serogroups detected among animals are those most frequently associated with human diseases.
Resumo:
Plague, one of the most devastating diseases of human history, is caused by Yersinia pestis. In this study, we analyzed the population genetic structure of Y. pestis and the two other pathogenic Yersinia species, Y. pseudotuberculosis and Y. enterocolitica. Fragments of five housekeeping genes and a gene involved in the synthesis of lipopolysaccharide were sequenced from 36 strains representing the global diversity of Y. pestis and from 12–13 strains from each of the other species. No sequence diversity was found in any Y. pestis gene, and these alleles were identical or nearly identical to alleles from Y. pseudotuberculosis. Thus, Y. pestis is a clone that evolved from Y. pseudotuberculosis 1,500–20,000 years ago, shortly before the first known pandemics of human plague. Three biovars (Antiqua, Medievalis, and Orientalis) have been distinguished by microbiologists within the Y. pestis clone. These biovars form distinct branches of a phylogenetic tree based on restriction fragment length polymorphisms of the locations of the IS100 insertion element. These data are consistent with previous inferences that Antiqua caused a plague pandemic in the sixth century, Medievalis caused the Black Death and subsequent epidemics during the second pandemic wave, and Orientalis caused the current plague pandemic.
Resumo:
Bibliography: p. 5-6.
Resumo:
Yersinia enterocolitica and Yersinia pseudotuberculosis are among the major enteropathogenic bacteria causing infections in humans in many industrialized countries. In Finland, Y. pseudotuberculosis has caused 10 outbreaks among humans during 1997-2008. Some of these outbreaks have been very extensive involving over 400 cases; mainly children attending schools and day-care. Y. enterocolitica, on the contrary, has caused mainly a large number of sporadic human infections in Finland. Y. pseudotuberculosis is widespread in nature, causing infections in a variety of domestic and wild animals. Foodborne transmission of human infections has long been suspected, however, attempts to trace the pathogen have been unsuccessful before this study that epidemiologically linked Y. pseudotuberculosis to a specific food item. Furthermore, due to modern food distribution systems, foodborne outbreaks usually involve many geographically separate infection clusters difficult to identify as part of the same outbreak. Among pathogenic Y. enterocolitica, the global predominance of one genetically homogeneous type (bioserotype 4/O:3) is a challenge to the development of genetic typing methods discriminatory enough for epidemiological purposes, for example, for tracing back to the sources of infections. Furthermore, the diagnostics of Y. enterocolitica infections is hampered because clinical laboratories easily misidentify some other members of the Yersinia species (Y. enterocolitica–like species) as Y. enterocolitica. This results in misleading information on the prevalence and clinical significance of various Yersinia isolates. The aim of this study was to develop and optimize molecular typing methods to be used in epidemiological investigations of Y. enterocolitica and Y. pseudotuberculosis, particularly in active surveillance and outbreak investigations of Y. pseudotuberculosis isolates. The aim was also to develop a simplified set of phenotypic tests that could be used in routine diagnostic laboratories for the correct identification of Y. enterocolitica and Y. enterocolitica –like species. A PFGE method designed here for typing of Y. pseudotuberculosis was efficient in linking the geographically dispersed and apparently unrelated Y. pseudotuberculosis infections as parts of the same outbreak. It proved to be useful in active laboratory-based surveillance of Y. pseudotuberculosis outbreaks. Throughout the study period, information about the diversity of genotypes among outbreak and non-outbreak related strains of human origin was obtained. Also, to our knowledge, this was the first study to epidemiologically link a Y. pseudotuberculosis outbreak of human illnesses to a specific food item, iceberg lettuce. A novel epidemiological typing method based on the use of a repeated genomic region (YeO:3RS) as a probe was developed for the detection and differentiation between strains of Y. enterocolitica subspecies palearctica. This method was able to increase the discrimination in a set of 106 previously PFGE typed Finnish Y. enterocolitica bioserotype 4/O:3 strains among which two main PFGE genotypes had prevailed. The developed simplified method was a more reliable tool than the commercially available biochemical test kits for differentiation between Y. enterocolitica and Y. enterocolitica –like species. In Finland, the methods developed for Y. enterocolitica and Y. pseudotuberculosis have been used to improve the identification protocols and in subsequent outbreak investigations.
Resumo:
Proteolysis is important in bacterial pathogenesis and colonization of animal and plant hosts. In this work I have investigated the functions of the bacterial outer membrane proteases, omptins, of Yersinia pestis and Salmonella enterica. Y. pestis is a zoonotic pathogen that causes plague and has evolved from gastroenteritis-causing Yersinia pseudotuberculosis about 13 000 years ago. S. enterica causes gastroenteritis and typhoid fever in humans. Omptins are transmembrane β-barrels with ten antiparallel β-strands and five surface-exposed loops. The loops are important in substrate recognition, and variation in the loop sequences leads to different substrate selectivities between omptins, which makes omptins an ideal platform to investigate functional adaptation and to alter their polypeptide substrate preferences. The omptins Pla of Y. pestis and PgtE of S. enterica are 75% identical in their amino acid sequences. Pla is a multifunctional protein with proteolytic and non-proteolytic functions, and it increases bacterial penetration and proliferation in the host. Functions of PgtE increase migration of S. enterica in vivo and bacterial survival in mouse macrophages, thus enhancing bacterial spread within the host. Mammalian plasminogen/fibrinolytic system maintains the balance between coagulation and fibrinolysis and participates in several cellular processes, e.g., cell migration and degradation of extracellular matrix proteins. This system consists of activation cascades, which are strictly controlled by several regulators, such as plasminogen activator inhibitor 1 (PAI-1), α2-antiplasmin (α2AP), and thrombin-activatable fibrinolysis inhibitor (TAFI). This work reveals novel interactions of the omptins of Y. pestis and S. enterica with the regulators of the plasminogen/fibrinolytic system: Pla and PgtE inactivate PAI-1 by cleavage at the reactive site peptide bond, and degrade TAFI, preventing its activation to TAFIa. Structure-function relationship studies with Pla showed that threonine 259 of Pla is crucial in plasminogen activation, as it prevents degradation of the plasmin catalytic domain by the omptin and thus maintains plasmin stability. In this work I constructed chimeric proteins between Pla and Epo of Erwinia pyrifoliae that share 78% sequence identity to find out which amino acids and regions in Pla are important for its functions. Epo is neither a plasminogen activator nor an invasin, but it degrades α2AP and PAI-1. Cumulative substitutions towards Pla sequence turned Epo into a Pla-like protein. In addition to threonine 259, loops 3 and 5 are critical in plasminogen activation by Pla. Turning Epo into an invasin required substitution of 31 residues located at the extracellular side of the Epo protein above the lipid bilayer, and also of the β1-strand in the N-terminal transmembrane region of the protein. These studies give an example of how omptins adapt to novel functions that advantage their host bacteria in different ecological niches.
Resumo:
Pathogenic biotypes of Yersinia enterocolitica (serotypes O:3, O:8, O:9, and O:13), but not environmental biotypes (serotypes O:5, O:6, O:7,8, and O:7,8,13,19), increased their permeability to hydrophobic probes when they were grown at pH 5.5 or in EGTA-supplemented (Ca(2+)-restricted) media at 37 degrees C. A similar observation was also made when representative strains of serotypes O:8 and O:5 were tested after brief contact with human monocytes. The increase in permeability was independent of the virulence plasmid. The role of lipopolysaccharide (LPS) in this phenomenon was examined by using Y. enterocolitica serotype O:8. LPS aggregates of bacteria grown in acidic or EGTA-supplemented broth took up more N-phenylnaphthylamine than LPS aggregates of bacteria grown in standard broth and also showed a marked increase in acyl chain fluidity which correlated with permeability, as determined by measurements obtained in the presence of hydrophobic dyes. No significant changes in O-antigen polymerization were observed, but lipid A acylation changed depending on the growth conditions. In standard medium at 37 degrees C, there were hexa-, penta-, and tetraacyl lipid A forms, and the pentaacyl form was dominant. The amount of tetraacyl lipid A increased in EGTA-supplemented and acidic media, and hexaacyl lipid A almost disappeared under the latter conditions. Our results suggest that pathogenic Y. enterocolitica strains modulate lipid A acylation coordinately with expression of virulence proteins, thus reducing LPS packing and increasing outer membrane permeability. The changes in permeability, LPS acyl chain fluidity, and lipid A acylation in pathogenic Y. enterocolitica strains approximate the characteristics in Yersinia pseudotuberculosis and Yersinia pestis and suggest that there is a common outer membrane pattern associated with pathogenicity.
Resumo:
The genus Yersinia contains three species pathogenic to humans: Y. pestis, Y. enterocolitica e Y. pseudotuberculosis. The pathogenicity of Yersinia is linked to the presence of a 70-kb virulence plasmid (pYV) that is common to the three species and codifies a type III secretion system and a set of virulence proteins, including those known as Yersinia outer proteins (Yops), that are exported by this system when the bacteria encounter host cells. Two Yops translocators (YopB and YopD) are inserted into the host plasma membrane and transport six effectors (YopO, YopH, YopM, YopJ and YopT) across the membrane into the cytosol of the host cell. The Yops effectors interfere with multiple signaling pathways of the infected cell, affecting both the innate and adaptive immune responses. This article focuses on the role of Yops in the modulation of the host immune response.
Resumo:
Data on the occurrence of Yersinia species, other than Y. pestis in Brazil are presented. Over the past 40 years, 767 Yersinia strains have been identified and typed by the National Reference Center on Yersinia spp. other than Y. pestis, using the classical biochemical tests for species characterization. The strains were further classified into biotypes, serotypes and phagetypes when pertinent. These tests led to the identification of Yersinia cultures belonging to the species Y. enterocolitica, Y. pseudotuberculosis, Y. intermedia, Y. frederiksenii and Y. kristensenii. Six isolates could not be classified in any of the known Yersinia species and for this reason were defined as Non-typable (NT). The bio-sero-phagetypes of these strains were diverse. The following species of Yersinia were not identified among the Brazilian strains by the classical phenotypic or biochemical tests: Y. aldovae, Y. rhodei, Y. mollaretti, Y. bercovieri and Y. ruckeri. The Yersinia strains were isolated from clinical material taken from sick and/or healthy humans and animals, from various types of food and from the environment, by investigators of various Institutions localized in different cities and regions of Brazil.
Resumo:
Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.
Resumo:
El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.
Resumo:
Bacterial pathogens have evolved sophisticated mechanisms to interact with their hosts. A specialized type III protein secretion system capable of translocating bacterial proteins into host cells has emerged as a central factor in the interaction between a variety of mammalian and plant pathogenic bacteria with their hosts. Here we describe AvrA, a novel target of the centisome 63 type III protein secretion system of Salmonella enterica. AvrA shares sequence similarity with YopJ of the animal pathogen Yersinia pseudotuberculosis and AvrRxv of the plant pathogen Xanthomonas campestris pv. vesicatoria. These proteins are the first examples of putative targets of type III secretion systems in animal and plant pathogenic bacteria that share sequence similarity. They may therefore constitute a novel family of effector proteins with related functions in the cross-talk of these pathogens with their hosts.
Resumo:
High-efficiency entry of the enteropathogenic bacterium Yersinia pseudotuberculosis into nonphagocytic cells is mediated by the bacterial outer membrane protein invasin. Invasin-mediated uptake requires high affinity binding of invasin to multiple β1 chain integrin receptors on the host eukaryotic cell. Previous studies using inhibitors have indicated that high-efficiency uptake requires tyrosine kinase activity. In this paper we demonstrate a requirement for focal adhesion kinase (FAK) for invasin-mediated uptake. Overexpression of a dominant interfering form of FAK reduced the amount of bacterial entry. Specifically, the autophosphorylation site of FAK, which is a reported site of c-Src kinase binding, is required for bacterial internalization, as overexpression of a derivative lacking the autophosphorylation site had a dominant interfering effect as well. Cultured cells expressing interfering variants of Src kinase also showed reduced bacterial uptake, demonstrating the involvement of a Src-family kinase in invasin-promoted uptake.
Resumo:
Pathogenic yersiniae secrete a set of antihost proteins, called Yops, by a type III secretion mechanism. Upon infection of cultured epithelial cells, extracellular Yersinia pseudotuberculosis and Yersinia enterocolitica translocate cytotoxin YopE across the host cell plasma membrane. Several lines of evidence suggest that tyrosine phosphatase YopH follows the same pathway. We analyzed internalization of YopE and YopH into murine PU5-1.8 macrophages by using recombinant Y. enterocolitica producing truncated YopE and YopH proteins fused to a calmodulin-dependent adenylate cyclase. The YopE-cyclase and YopH-cyclase hybrids were readily secreted by Y. enterocolitica. The N-terminal domain required for secretion was not longer than 15 residues of YopE and 17 residues of YopH. Internalization into eukaryotic cells, revealed by cAMP production, only required the N-terminal 50 amino acid residues of YopE and the N-terminal 71 amino acid residues of YopH. YopE and YopH are thus modular proteins composed of a secretion domain, a translocation domain, and an effector domain. Translocation of YopE and YopH across host cell's membranes was also dependent on the secretion of YopB and YopD by the same bacterium. The cyclase fusion approach could be readily extended to study the fate of other proteins secreted by invasive bacterial pathogens.
Resumo:
The locus of enterocyte effacement (LEE) is a large multigene chromosomal segment encoding gene products responsible for the generation of attaching and effacing lesions in many diarrheagenic Escherichia coli strains. A recently sequenced LEE harboring a pathogenicity island (PAI) from a Shiga toxin E. coli serotype 026 strain revealed a LEE PAI (designated LEE 026) almost identical to that obtained from a rabbit-specific enteropathogenic 015:H- strain. LEE 026 comprises 59,540 bp and is inserted at 94 min within the mature pheU tRNA locus. The LEE 026 PAI is flanked by two direct repeats of 137 and 136 bp (DR1 and DR2), as well as a gene encoding an integrase belonging to the P4 integrase family. We examined LEE 026 for horizontal gene transfer. By generating mini-LEE plasmids harboring only DR1 or DR2 with or without the integrase-like gene, we devised a simple assay to examine recombination processes between these sequences. Recombination was shown to be integrase dependent in a Delta recA E. coli K-12 strain background. Recombinant plasmids harboring a single direct repeat cloned either with or without the LEE 026 integrase gene were found to insert within the chromosomal pheU locus of E. coli K-12 strains with equal efficiency, suggesting that an endogenous P4-like integrase can substitute for this activity. An integrase with strong homology to the LEE 026 integrase was detected on the K-12 chromosome associated with the leuX tRNA locus at 97 min. Strains deleted for this integrase demonstrated a reduction in the insertion frequency of plasmids harboring only the DR into the pheU locus. These results provide strong evidence that LEE-harboring elements are indeed mobile and suggest that closely related integrases present on the chromosome of E. coli strains contribute to the dynamics of PAI mobility.
Resumo:
Aims: To determine the species, bio-sero-phagetypes, antimicrobial drug resistance and also the pathogenic potential of 144 strains of Yersinia spp. isolated from water sources and sewage in Brazil.Methods and Results: the 144 Yersinia strains were characterized biochemically, serologically and had their antibiotic resistance and phenotypic virulence markers determined by microbiological and serological standard techniques. The Y. enterocolitica strains related to human diseases were also tested for the presence of virulence genes, by the PCR technique. The isolates were classified as Y. enterocolitica, Y. intermedia, Y. frederiksenii, Y. kristensenii and Yersinia biochemically atypical. The 144 isolates belonged to various bio-serogroups. Half of the strains showed resistance to three or more drugs. The Y. enterocolitica strains related to human diseases exhibited phenotypic virulence characteristics and virulence genes.Conclusions: Water from various sources and sewage are contaminated with Yersinia spp. in Brasil. Among these bacteria, virulent strains of Y. enterocolitica were found, with biotypes and serogroups related to human diseases.Significance and Impact of the Study: This is the first documented description of the occurrence of pathogenic Y. enterocolitica in water sources and sewage in Brazil. The occurrence of virulence strains of Y. enterocolitica shows that the environment is a potential source of human infection by this species in this country.