998 resultados para YEAST TRANSFER RNAPHE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An intrinsic feature of yeast artificial chromosomes (YACs) is that the cloned DNA is generally in the same size range (i.e., approximately 200-2000 kb) as the endogenous yeast chromosomes. As a result, the isolation of YAC DNA, which typically involves separation by pulsed-field gel electrophoresis, is frequently confounded by the presence of a comigrating or closely migrating endogenous yeast chromosome(s). We have developed a strategy that reliably allows the isolation of any YAC free of endogenous yeast chromosomes. Using recombination-mediated chromosome fragmentation, a set of Saccharomyces cerevisiae host strains was systematically constructed. Each strain contains defined alterations in its electrophoretic karyotype, which provide a large-size interval devoid of endogenous chromosomes (i.e., a karyotypic "window"). All of the constructed strains contain the kar1-delta 15 mutation, thereby allowing the efficient transfer of a YAC from its original host into an appropriately selected window strain using the kar1-transfer procedure. This approach provides a robust and efficient means to obtain relatively pure YAC DNA regardless of YAC size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein farnesyltransferase catalyzes the alkylation of cysteine in C-terminal CaaX sequences of a variety of proteins, including Ras, nuclear lamins, large G proteins, and phosphodiesterases, by farnesyl diphosphate (FPP). These modifications enhance the ability of the proteins to associate with membranes and are essential for their respective functions. The enzyme-catalyzed reaction was studied by using a series of substrate analogs for FPP to distinguish between electrophilic and nucleophilic mechanisms for prenyl transfer. FPP analogs containing hydrogen, fluoromethyl, and trifluoromethyl substituents in place of the methyl at carbon 3 were evaluated as alternative substrates for alkylation of the sulfhydryl moiety in the peptide dansyl-GCVIA. The analogs were alternative substrates for the prenylation reaction and were competitive inhibitors against FPP. A comparison of kcat for FPP and the analogs with ksolv, the rate constants for solvolysis of related p-methoxybenzenesulfonate derivatives, indicated that protein prenylation occurred by an electrophilic mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract of the poster presented 33rd Small Meeting on Yeast Transport and Energetics, 21-24 July 2015, Lisbon, Portugal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foaming during fermentation reduces the efficiency of the process leading to increased costs and reduced productivity. Foaming can be overcome by the use of chemical antifoaming agents, however their influence upon the growth of organisms and protein yield is poorly understood. The objective of this work was to evaluate the effects of different antifoams on recombinant protein production. Antifoam A, Antifoam C, J673A, P2000 and SB2121 were tested at different concentrations for their effect on the growth characteristics of Pichia pastoris producing GFP, EPO and A2aR and the yield of protein in shake flasks over 48 h. All antifoams tested increased the total GFP in the shake flasks compared to controls, at higher concentrations than would normally be used for defoaming purposes. The highest yield was achieved by adding 1 % P2000 which nearly doubled the total yield followed by 1 % SB2121, 1 % J673A, 0.6 % Antifoam A and lastly 0.8 % Antifoam C. The antifoams had a detrimental effect upon the production of EPO and A2aR in shake flasks, suggesting that their effects may be protein specific. The mechanisms of action of the antifoams was investigated and suggested that although the volumetric mass oxygen transfer coefficient (kLa) was influenced by the agents, their effect upon the concentration of dissolved oxygen did not contribute to the changes in growth or recombinant protein yield. Findings in small scale also suggested that antifoams of different compositions such as silicone polymers and alcoxylated fatty acid esters may influence growth characteristics of host organisms and the ability of the cells to secrete recombinant protein, indirectly affecting the protein yield. Upon scale-up, the concentration effects of the antifoams upon GFP yield in bioreactors was reversed, with lower concentrations producing a higher yield. These data suggest that antifoam can affect cells in a multifactorial manner and highlights the importance of screening for optimum antifoam types and concentrations for each bioprocesses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One innovative thought in biomolecular electronics is the exploitation of electron transfer proteins. Using nature's self assembly techniques, proteins can build highly organized edifices with retained functional activity, and they can serve as platforms for biosensors. In this research work, Yeast Cytochrome C (YCC) is immobilized with a help of a linker molecule, 3-Mercaptopropyltrimethoxysilane (3-MPTS) on a hydroxylated surface of a silicon substrate. Atomic Force Microscopy (AFM) is used for characterization. AFM data shows immobilization of one YCC molecule in between eight grids that are formed by the linker molecules. 3-MPTS monolayers are organized in grids that are 1.2 nm apart. Immobilization of 3-MPTS was optimized using a concentration of 5 mM in a completely dehydrated state for 30 minutes. The functionally active grids of YCC can now be incorporated with Cytochrome C oxidase on a Platinum electrode surface for transfer of electrons in development of biosensors, such as nitrate sensor, that are small in size, cheaper, and easier to manufacture than the top-down approach of fabrication of molecular biodevices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a comprehensive study of protein-mediated membrane fusion through single-molecule fluorescence resonance energy transfer (smFRET). Membrane fusion is one of the important cellular processes by which two initially distinct lipid bilayers merge their hydrophobic cores, resulting in one interconnected structure. For example, exocytosis, fertilization of an egg by a sperm and communication between neurons are a few among many processes that rely on some form of fusion. Proteins called soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) play a central role in fusion processes which is also regulated by many accessory proteins, such as synaptotagmin, complexin and Munc18. By a new lipid mixing method at the single-vesicle level, we are able to accurately detect different stages of SNARE-mediated membrane fusion including docking, hemi and full fusion via FRET value of single donor/acceptor vesicle pair. Through this single-vesicle lipid mixing assay, we discovered the vesicle aggregation induced by C2AB/Ca2+, the dual function of complexin, and the fusion promotion role of Munc18/SNARE-core binding mode. While this new method provides the information regarding the extent of the ensemble lipid mixing, the fusion pore opening between two vesicular cavities and the interaction between proteins cannot be detected. In order to overcome these limitations, we then developed a single-vesicle content mixing method to reveal the key factor of pore expansion by detecting the FRET change of dual-labeled DNA probes encapsulated in vesicles. Through our single-vesicle content mixing assay, we found the fusion pore expansion role of yeast SNAREs as well as neuronal SNAREs plus synaptotagmin 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.