847 resultados para Weather Research and Forecast Model (WRF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Process modeling is an emergent area of Information Systems research that is characterized through an abundance of conceptual work with little empirical research. To fill this gap, this paper reports on the development and validation of an instrument to measure user acceptance of process modeling grammars. We advance an extended model for a multi-stage measurement instrument development procedure, which incorporates feedback from both expert and user panels. We identify two main contributions: First, we provide a validated measurement instrument for the study of user acceptance of process modeling grammars, which can be used to assist in further empirical studies that investigate phenomena associated with the business process modeling domain. Second, in doing so, we describe in detail a procedural model for developing measurement instruments that ensures high levels of reliability and validity, which may assist fellow scholars in executing their empirical research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2007, KITE Arts Education Program @ QPAC has been engaged in a series of arts and drama-based experiences for students in selected primary schools on the edges of Brisbane and in regional Queensland. The in-school workshop experiences of the program have culminated in a performance by the children for their school community, parents and carers at the Queensland Performing Arts Centre or a regional cultural venue. In conducting an analysis of the Yonder project, the researcher aimed to provide evidence of outcomes brought about through participation by schools, school staff, students and their communities in the Yonder project. To develop longitudinal data project initiators, participants were interviewed at six-monthly intervals to establish patterns of engagement and participation. The report analyses arts-based workshops conducted by the teacher artist in edge-city Brisbane and a regional centre; interviews with teachers and school administrators from the participating schools; interviews with teacher artist and professional artists; interviews with community partners; teacher professional development workshops; community-based workshops; performance outcomes that were the culminating events of the workshop program; student work samples and student reflections on the program. This document covers data and project outputs from February 2010 to July 2012. There have been five iterations of the Yonder project since its commencement in mid-2009 — three in regional Queensland (February–April 2010; February–May 2011; February–May 2012) and two in edge-city1 Brisbane (July–September 2010; August–October 2011). This report is a result of a research partnership between Queensland Performing Arts Centre and Queensland University of Technology (QUT) Creative Industries Faculty(Drama).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background A novel avian influenza A (H7N9) virus was first found in humans in Shanghai, and infected over 433 patients in China. To date, very little is known about the spatiotemporal variability or environmental drivers of the risk of H7N9 infection. This study explored the spatial and temporal variation of H7N9 infection and assessed the effects of temperature and rainfall on H7N9 incidence. Methods A Bayesian spatial conditional autoregressive (CAR) model was used to assess the spatiotemporal distribution of the risk of H7N9 infection in Shanghai, by district and fortnight for the period 19th February–14th April 2013. Data on daily laboratory-confirmed H7N9 cases, and weather variability including temperature (°C) and rainfall (mm) were obtained from the Chinese Information System for Diseases Control and Prevention and Chinese Meteorological Data Sharing Service System, respectively, and aggregated by fortnight. Results High spatial variations in the H7N9 risk were mainly observed in the east and centre of Shanghai municipality. H7N9 incidence rate was significantly associated with fortnightly mean temperature (Relative Risk (RR): 1.54; 95% credible interval (CI): 1.22–1.94) and fortnightly mean rainfall (RR: 2.86; 95% CI: 1.47–5.56). Conclusion There was a substantial variation in the spatiotemporal distribution of H7N9 infection across different districts in Shanghai. Optimal temperature and rainfall may be one of the driving forces for H7N9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past two decades, the selection, optimization, and compensation (SOC) model has been applied in the work context to investigate antecedents and outcomes of employees' use of action regulation strategies. We systematically review, meta-analyze, and critically discuss the literature on SOC strategy use at work and outline directions for future research and practice. The systematic review illustrates the breadth of constructs that have been studied in relation to SOC strategy use, and that SOC strategy use can mediate and moderate relationships of person and contextual antecedents with work outcomes. Results of the meta-analysis show that SOC strategy use is positively related to age (rc = .04), job autonomy (rc = .17), self-reported job performance (rc = .23), non-self-reported job performance (rc = .21), job satisfaction (rc = .25), and job engagement (rc = .38), whereas SOC strategy use is not significantly related to job tenure, job demands, and job strain. Overall, our findings underline the importance of the SOC model for the work context, and they also suggest that its measurement and reporting standards need to be improved to become a reliable guide for future research and organizational practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. METHODOLOGY: The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. PRINCIPAL FINDINGS: The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. CONCLUSIONS: Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of media outlets now issue medium-range (~7 day) weather forecasts on a regular basis. It is therefore logical that aerobiologists should attempt to produce medium-range forecasts for allergenic pollen that cover the same time period as the weather forecasts. The objective of this study is to construct a medium-range (< 7 day) forecast model for grass pollen at north London. The forecast models were produced using regression analysis based on grass pollen and meteorological data from 1990-1999 and tested on data from 2000 and 2002. The modelling process was improved by dividing the grass pollen season into three periods; the pre-peak, peak and post peak periods of grass pollen release. The forecast consisted of five regression models. Two simple linear regression models predicting the start and end date of the peak period, and three multiple regression models forecasting daily average grass pollen counts in the pre-peak, peak and post-peak periods. Overall the forecast models achieved 62% accuracy in 2000 and 47% in 2002, reflecting the fact that the 2002 grass pollen season was of a higher magnitude than any of the other seasons included in the analysis. This study has the potential to make a notable contribution to the field of aerobiology. Winter averages of the North Atlantic Oscillation were used to predict certain characteristics of the grass pollen season, which presents an important advance in aerobiological work. The ability to predict allergenic pollen counts for a period between five and seven days will benefit allergy sufferers. Furthermore, medium-range forecasts for allergenic pollen will be of assistance to the medical profession, including allergists planning treatment and physicians scheduling clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of selected observing systems on forecast skill is explored using the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40) system. Analyses have been produced for a surface-based observing system typical of the period prior to 1945/1950, a terrestrial-based observing system typical of the period 1950-1979 and a satellite-based observing system consisting of surface pressure and satellite observations. Global prediction experiments have been undertaken using these analyses as initial states, and which are available every 6 h, for the boreal winters of 1990/1991 and 2000/2001 and the summer of 2000, using a more recent version of the ECMWF model. The results show that for 500-hPa geopotential height, as a representative field, the terrestrial system in the Northern Hemisphere extratropics is only slightly inferior to the control system, which makes use of all observations for the analysis, and is also more accurate than the satellite system. There are indications that the skill of the terrestrial system worsens slightly and the satellite system improves somewhat between 1990/1991 and 2000/2001. The forecast skill in the Southern Hemisphere is dominated by the satellite information and this dominance is larger in the latter period. The overall skill is only slightly worse than that of the Northern Hemisphere. In the tropics (20 degrees S-20 degrees N), using the wind at 850 and 250 hPa as representative fields, the information content in the terrestrial and satellite systems is almost equal and complementary. The surface-based system has very limited skill restricted to the lower troposphere of the Northern Hemisphere. Predictability calculations show a potential for a further increase in predictive skill of 1-2 d in the extratropics of both hemispheres, but a potential for a major improvement of many days in the tropics. As well as the Eulerian perspective of predictability, the storm tracks have been calculated from all experiments and validated for the extratropics to provide a Lagrangian perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.