870 resultados para WATER-OIL EMULSION
Resumo:
The lubricants found in the market are of mineral or synthetic origin and harm to humans and the environment, mainly due to their improper discard. Therefore industries are seeking to develop products that cause less environmental impact, so to decrease mainly, operator aggression the Cutting Fluids became an emulsion of oil / water or water / oil. However, the emulsion was not considered the most suitable solution for environmental question, therefore the search for biodegradable lubricants and which no are toxic continues and so vegetable oils are seen, again, as a basis for the production of lubricants. The biggest problem with these oils is their oxidative instability that is intensified when working at high temperatures. The process transesterification decreases the oxidation, however changes some physical and chemical properties. Therefore soybean oil after the transesterification process was subjected to tests of density, dynamic viscosity, kinematic viscosity which is calculated from two parameters mentioned, flash point and acidity. Besides the physico-chemical test the soybean oil was subjected to a dynamic test in a tribometer adapted from a table vise, whose induced wear was the adhesive and ultimately was used as cutting fluid in a process of turning in two different materials, steel 1045 and cast iron. This latter test presented results below the mineral cutting fluid which it was compared in all tests, already in other experiments the result was satisfactory and other experiments not, so that chemical additives can be added to the oil analyzed to try equate all parameters and so formulate a biolubrificante not toxic to apply in machining processes of metalworking industry
Resumo:
In recent decades, the generation of solid and liquid waste has increased substantially due to increased industrial activity that is directly linked to economic growth. For that is the most efficient process, it is inevitable generation of such wastes. In the oil industry, a major waste generated in oil exploration is produced water, which due to its complex composition and the large amount generated, has become a challenge, given the restrictions imposed by environmental laws regarding their disposal, making if necessary create alternatives for reuse or treatment in order to reduce the content of contaminants and reduce the harmful effects to the environment. This water can be present in free form or emulsified with the oil, when in the form of an emulsion of oil-water type, it is necessary to use chemicals to promote the separation and flotation is the treatment method which has proved to be more efficient, for it can remove much of the emulsified oil when compared to other methods. In this context, the object of this work was to study the individual effects and interactions of some physicochemical parameters of operations, based on previous work to a flotation cell used in the separation of synthetic emulsion oil / water in order to optimize the efficiency of the separation process through of the 24 full factorial design with center point. The response variables to evaluate the separation efficiency was the percentage of color and turbidity removal. The independent variables were: concentration of de-emulsifying, oil content in water, salinity and pH, these being fixed, minimum and maximum limits. The analysis of variance for the equation of the empirical model, was statistically significant and useful for predictive purposes the separation efficiency of the floater with R2 > 90%. The results showed that the oil content in water and the interaction between the oil content in water and salinity, showed the highest values of the estimated effects among all the factors investigated, having great and positive influence on the separation efficiency. By analyzing the response surface was determined maximum removal efficiency above 90% for both measured for turbidity as a measure of color when in a saline medium (30 g/L), the high oil concentrations (306 ppm) using low concentrations of de-emulsifying (1,1 ppm) and at pH close to neutral
Resumo:
Petroleum exists in the nature in certain underground formations where it is adsorbed into the rocks pores. For the conventional recovery methods usually only 30% of the oil is extracted and this can be credited, basically, to three aspects: high viscosity of the oil, geology of the formation and high interfacial tensions between the reservoir s fluids. The enhanced recovery methods use the injection of a fluid or fluids mixture in a reservoir to act in points where the conventional process didn't reach the recovery rates. Microemulsion flooding, considered an enhanced method, has the purpose to desorb the oil from the rock formation and to attain an efficient displacement of the oil emulsion. With this in mind, this work was accomplished with two main objectives: the study of the parameters effect that influence a microemulsified system (surfactant and cosurfactant types, C/S rate and salinity) and the evaluation of displacement efficiency with the microemulsions that showed stability in the rich aqueous area. For the analyzed parameters it was chose the microemulsions composition used in the recovery stage: 25% water, 5% kerosene, 46.7% of butanol as cosurfactant and 23.3% of BC or SCO cosurfactant. The core plugs of Assu and Botucatu sandstones were appraised in porosity and permeability tests and then submitted to the steps of saturation with seawater and oil, conventional recovery with water and enhanced recovery with the selected microemulsions. The Botucatu sandstone presented better recovery parameters, and the microemulsion composed with BS surfactant had larger recovery efficiency (26.88%)
Resumo:
The separation oil-water by the use of flotation process is characterized by the involvement between the liquid and gas phases. For the comprehension of this process, it s necessary to analyze the physical and chemical properties command float flotation, defining the nature and forces over the particles. The interface chemistry has an important role on the flotation technology once, by dispersion of a gas phase into a liquid mixture the particles desired get stuck into air bubbles, being conduced to a superficial layer where can be physically separated. Through the study of interface interaction involved in the system used for this work, was possible to apply the results in an mathematical model able to determine the probability of flotation using a different view related to petroleum emulsions such as oil-water. The terms of probability of flotation correlate the collision and addition between particles of oil and air bubbles, that as more collisions, better is the probability of flotation. The additional probability was analyzed by the isotherm of absorption from Freundlich, represents itself the add probability between air bubbles and oil particles. The mathematical scheme for float flotation involved the injected air flow, the size of bubbles and quantity for second, the volume of float cell, viscosity of environment and concentration of demulsifier. The results shown that the float agent developed by castor oil, pos pH variation, salt quantity, temperature, concentration and water-oil quantity, presented efficient extraction of oil from water, up to 95%, using concentrations around 11 ppm of demulsifier. The best results were compared to other commercial products, codified by ―W‖ and ―Z‖, being observed an equivalent demulsifier power between Agflot and commercial product ―W‖ and superior to commercial product ―Z‖
Resumo:
PURPOSE: To evaluate the effects of copaiba oil on jaw defects repair in Wistar rats treated with bioglass or adipose tissue. METHODS: A jaw defect was randomly created in forty-two rats and filled with bioglass or adipose tissue. The two groups (Gbio and Gcell) were subdivided in three subgroups with seven animals each according to gavage administration: control (distillated water), oil (copaiba oil) and melox (meloxicam). Euthanasia was performed after forty post-operative days. The bone formation was analyzed regarding the histological aspects. RESULTS: The osteoclasts activity was observed only in four subgroups (p=0.78). Regarding the osteoblasts presence, it was very similar between the subgroups, the difference was due to Gcell-melox (p=0.009) that presented less osteoblastic activity. The inflammatory cells were more evident in Gcell-melox subgroup, however, there was no difference in comparison with the other subgroups (p=0.52). Bone formation was observed in all subgroups, just two animals showed no bone formation even after 40 days. More than 50% of bone matrix mineralization was observed in 56% (23 animals) of the analyzed areas. The bone matrix mineralization was not different between subgroups (p=0.60). CONCLUSIONS: The subgroups that received copaiba oil showed bone repair, although not statistically significant in comparison to subgroups treated whit meloxicam or controls. Copaiba oil administered by gavage had no effect on bone repair in this experimental model.
Resumo:
In this thesis, we have presented the preparation of highly crosslinked spherical photoreactive colloidal particles of radius about 10 nm based on the monomer trimethoxysilane. These particles are labeled chemically with two different dye systems (coumarin, cinnamate) which are known to show reversible photodimerization. By analyzing the change in particle size upon UV irradiation with dynamic light scattering, we could demonstrate that the partially reversible photoreaction in principle can be utilized to control increase and decrease of colloidal clusters. Here, selection of the appropriate wavelengths during the irradiation employing suitable optical filters proved to be very important. Next, we showed how photocrosslinking of our nanoparticles within the micrometer-sized thin oil shell of water-oil-water emulsion droplets leads to a new species of optically addressable microcontainers. The inner water droplet of these emulsions may contain drugs, dyes or other water-soluble components, leading to filled containers. Thickness, mechanical stability and light resistance of the container walls can be controlled in a simple way by the amount and adjustable photoreactivity (= No. of labels/particle) of the nanoparticles. Importantly, the chemical bonds between the nanoparticles constituting the microcapsule shell can be cleaved photochemically by irradiation with uv light. An additional major advantage is that filling our microcapsules with water-soluble substrate molecules is extremely simple using a solution of the guest molecules as inner water phase of the W/O/W-emulsion. This optically controlled destruction of our microcontainers thus opens up a pathway to controlled release of the enclosed components as illustrated by the example of enclosed cyclodextrin molecules.
Resumo:
In studying the Cut Bank field and its numerous wells, it is found that dry holes are surrounded by producing wells, and also that the field as a whole is very irregular; water, oil, and gas zones in many cases following no definite pattern. In some instances, this phenomenon may be due to the lensing and thinning of the producing sands, but it is evident that this is not the only factor. Therefore, the controlling factors must be porosity and permeability.
Resumo:
Protection against Mycobacterium tuberculosis infection requires an effective cell mediated immune response leading to granuloma formation and organism containment. Trehalose 6,6'-dimycolate (TDM), a glycolipid present on the mycobacterial cell wall, has been implicated as a key component in establishment of the granulomatous response. TDM has potent immunoregulatory and inflammatory properties; the acute response to TDM produces pathology resembling early Mycobacterium tuberculosis infection. We have further developed this model to study TDM-specific cell mediated immune responses that may play a role in the later stages of infection and pathology. Lungs from mice immunized with TDM in the form of a water-oil-water (w/o/w) emulsion demonstrate heightened histological damage, inflammation, lymphocytic infiltration, and vascular endothelial cell damage upon subsequent challenge with TDM. This exacerbated response can be adoptively transferred to naïve mice via transfer of non-adherent lymphocytes from TDM immunized mice. To identify the cell phenotype(s) regulating this response, purified non-adherent cell populations (CD4+ and CD8+ T cells; CD19 + B cells) were isolated from TDM immunized mice, adoptively transferred into naive mice, and subsequently challenged with TDM. Lung histopathology and cytokine production identified CD4+ cells as the critical cell phenotype regulating the TDM-specific hypersensitive response. The role of CD1d in presentation of TDM was examined. CD1d, a molecule known to present lipids to T cells, was identified as critical in development of the hypersensitive response. CD4+ cells were isolated from TDM-immunized CD1d -/- mice and adoptively transferred into naive wild type mice, followed by TDM challenge. These mice were deficient in development of the hypersensitive granulomatous response, signifying the importance of CD1d in the generation of TDM-specific CD4+ cells. The experiments presented in this dissertation provide further evidence for involvement of TDM-specific cell mediated immune response in elicitation of pathological damage during Mycobacterium tuberculosis infection. ^
Resumo:
A geração de resíduos sólidos pelas atividades agroindustriais tem criado a demanda por um reaproveitamento tecnológico desses materiais. Assim, o objetivo deste trabalho foi avaliar o potencial bioativo e tecnológico de resíduos agroindustriais, como fontes naturais de compostos fenólicos com atividade antioxidante. Foram analisados resíduos agroindustriais vinícolas, de indústrias produtoras de polpas congeladas de frutas (açaí, cajá, cupuaçu e graviola) e provenientes do beneficiamento de café e de laranja. Inicialmente, foi realizado um estudo para a determinação das condições ótimas de extração, empregando planejamento experimental multivariado com delineamento composto central rotacional, cujos resultados foram avaliados empregando a técnica de superfície de resposta. Na sequência, foram feitos a triagem dos resíduos, baseada na atividade antioxidante, e a caracterização fenólica dos extratos hidroalcoólicos obtidos dos resíduos agroindustriais. De acordo com os resultados de atividade antioxidante, engaço de uva da variedade Chenin Blanc (EC) e semente de açaí (SA) foram os resíduos selecionados, os quais seguiram para as etapas de concentração e fracionamento bioguiado de sua(s) molécula(s) bioativa(s), as quais foram posteriormente identificadas por UHPLC-ESI-LTQ-MS. Extratos brutos e concentrados foram avaliados in vitro quanto à capacidade de desativação de espécies reativas de oxigênio (radicais peroxila, ânion superóxido e ácido hipocloroso) e então, aplicados em óleo de soja, emulsão e suspensão de lipossomos, a fim de se avaliar a efetividade desses extratos como antioxidante natural em matrizes lipídicas. Concentrações intermediárias de etanol (40-60%) e alta temperatura (96°C), exceto para semente de açaí (25°C), foram as condições ótimas para a extração de antioxidantes dos resíduos agroindustriais. Epicatequina, ácido gálico, catequina e procianidina B1 foram os compostos de maior ocorrência, quando avaliados pela técnica de HPLC-DAD. O EC apresentou a maior atividade antioxidante global e SA a maior atividade entre os resíduos de polpas de frutas, laranja e café. A concentração dos extratos brutos de EC e SA, pela resina Amberlite XAD®-2, produziu aumento significativo da atividade antioxidante. Além disso, extratos brutos e concentrados apresentaram atividade antiproliferativa e anti-inflamatória. Os extratos concentrados foram fracionados por meio de Sephadex LH-20, a partir da qual foi possível identificar quatro frações de maior bioatividade para o EC e três para o SA. Procianidina B1, catequina, epicatequina e resveratrol foram identificados no extrato concentrado e frações de EC. Dezoito procianidinas poliméricas, catequina, epicatequina foram os principais compostos identificados em SA, por meio de UHPLC-ESI-LTQ-MS. Resveratrol também foi encontrado em SA pela primeira vez. Quando avaliados em óleo de soja, EC e SA demonstraram atividade pro-oxidante. Contudo, elevada atividade antioxidante foi verificada quando essas amostras foram aplicadas em sistemas lipídicos coloidais, pois retardaram o consumo de oxigênio em uma emulsão óleo/água e o período de indução na produção de dienos conjugados em uma suspensão de lipossomos. Portanto, os resíduos agroindustriais EC e SA possuem potencial tecnológico de reaproveitamento industrial podendo ser considerados possíveis matérias-primas para a obtenção de extratos ricos em antioxidantes ou pela extração de antioxidantes naturais de uso pelas indústrias farmacêutica e/ou de alimentos.
Resumo:
"UC-11."
Resumo:
Phase diagrams of the pseudoternary systems ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and propylene glycol with and without butanol as a co-surfactant were prepared. Areas containing optically isotropic, one-phase systems were identified and samples therein designated as droplet, bicontinuous or solution type microemulsions using conductivity, viscosity and self-diffusion NMR. Nanoparticles were prepared by polymerization of selected microemulsions with ethyl-2-cyanoacrylate and the morphology of the particles was investigated. Addition of monomer to all types of microemulsions led to the formation of nanoparticles, which had an average size of 244 +/- 25 nm, an average polydispersity index of 0.15 +/- 0.04 and a zeta-potential of -17 +/- 3 mV. The formation of particles from water-free microemulsions of different types is surprising, particularly considering that polymerization is expected to occur at a water-oil interface by base-catalysed polymerization. It would appear that propylene glycol is sufficiently nucleophilic to initiate the polymerization. The use of water-free microemulsions as templates for the preparation of poly (alkylcyanoacrylate) nanoparticles opens up interesting opportunities for the encapsulation of bioactives which do not have suitable properties for encapsulation on the basis of water-containing microemulsions.
Resumo:
Purpose: To develop a novel chitosan/gelatin-hydroxyapatite (CGHaP) microspheres for evaluating the biological response of pre-osteoblast cells. Methods: The microsphere was prepared by water-in-oil emulsion method. Cell proliferation was studied using AlamarBlue colorimetric assay and DAPI staining while alkaline phosphatase assay was carried out by colorimetric assay method. Chitosan microspheres as well as chitosan-hydroxyapatite microspheres was prepared and tested for biological response from MC3T3-E1 cell line. Results: The results showed that CGHaP promotes MC3T3-E1 cell proliferation and spread on the surface of microspheres. The cells were clustered with more actin filaments and well-linked with neighbouring cells or adjacent cells when cultured in CGHaP microspheres whereas fewer cells were spread on chitosan (CH) microspheres. CGHaP microspheres significantly (p < 0.05) promoted cell attachment, proliferation and extracellular matrix mineralization. CGHaP microspheres presented significantly (p < 0.02) higher calcium deposition (0.5 ng) than CH microspheres (0.28 ng). Specifically, CGHaP microspheres exhibited high ALP activity (8 units; 2-fold) compared to CH with 3 units, after 7 days of incubation. The results suggest that CGHaP possesses a great ability to facilitate bone ingrowth formation and possibility of good osteointegration in vivo. Conclusion: The nanomaterial enhances the proliferation of pre-osteoblast cells in tissue engineering microspheres. The outcome of this study may have a major impact on the development of novel nanomaterials for bone tissue engineering.
Resumo:
Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.
Resumo:
Thirty-one isolates of Metarhizium anisopliae were bioassayed against the cattle tick (Boophilus microplus). More than half of the isolates showed a high degree of virulence to ticks. Radial growth curves for growth between 20 °C and 40 °C were obtained for all isolates. This information together with information on virulence will be important for the selection of isolates suitable to kill ticks on the surface of cattle. A biopesticide for cattle ticks must kill ticks rapidly at temperatures within the upper end of most isolates' growth curves. It was also found that the time taken to achieve 100% tick mortality in vitro using a virulent isolate could be halved by applying conidia in a 10% oil emulsion. Scanning electron microscopy and light microscopy were used to investigate and compare the germination and penetration of conidia formulated in aqueous and oil formulations. It was found that conidia in both formulations were able to germinate and produce appressoria on the surface of ticks in less than 11 h. Marked weakness within 26 h, followed by extensive hyphal growth on the cuticle characterised the invasion of ticks by M. anisopliae.
Resumo:
Three field trials were conducted over 12 months to assess the pathogenicity of Metarhizium anisopliae to parasitic stages of Rhipicephalus (Boophilus) microplus on dairy heifers under different environmental conditions. Two isolates were selected based on their high optimal growth temperature (30 °C), good spore production characteristics and ability to quickly kill adult engorged ticks in the laboratory. Spores were formulated in an oil emulsion and applied using a motor driven spray unit. Surface temperatures of selected animals were monitored, as were the ambient temperature and relative humidity. Unengorged ticks sampled from each animal immediately after treatment were incubated in the laboratory to assess the efficacy of the formulation and application. Egg production by engorged ticks collected in the first 3 days after treatment was monitored. Side counts of standard adult female ticks were conducted daily, before and after treatment to assess the performance of the fungus against all tick stages on the animals. In each trial the formulation rapidly caused 100% mortality in unengorged ticks that were removed from cattle and cultured in the laboratory. A significant reduction in egg production was recorded for engorged ticks collected in the 3 days post-treatment. However, there was little effect of the formulation on the survival of ticks on cattle, indicating that there is an interaction between the environment of the ticks on the cattle and the biopesticide, which reduces its efficacy against ticks.