899 resultados para Vocal Cord Paralysis
Resumo:
Objective. To standardize the design of individually fitted implants based on computed tomographic (CT) images for use in medialization laryngoplasty without intraoperative voice monitoring. Study Design. Prospective tomographic and anatomical experimental study of 10 human cadaveric larynges. Methods. CT scans of 10 excised human larynges were analyzed to define the shape and size of ideal implants for medialization laryngoplasty. Silicone implants were designed according to CT parameters and used in simulated laryngoplasties in the laryngeal specimens. The efficacy of each implant in providing adequate medialization of the vocal fold was evaluated. Results. Diverse shapes and sizes of implants were obtained, reflecting variations in laryngeal anatomy. The implants enabled regular medialization of the entire extent of the free border of the vocal fold, including its posterior aspect. Medialization was considered adequate in all cases. Conclusions. This method proved to be a simple and efficient way to design individualized implants for medialization laryngoplasty, regardless of the size and shape of the larynx.
Resumo:
OBJECTIVES: To study the prevalence of psychiatric comorbidity assessed by a structured clinical interview in patients with spasmodic dysphonia (SD) compared with patients suffering from vocal fold paralysis (VFP). METHODS: In 48 patients with SD and 27 patients with VFP, overall psychiatric comorbidity was studied prospectively using the Structured Clinical Interview for DSM-IV Axis I disorders. Physical disability and psychometric variables were assessed with standardised self-rating questionnaires. RESULTS: 41.7% of SD subjects and 19.5% of the control group met DSM-IV clinical criteria for current psychiatric comorbidity (p<0.05). Significant predictors of psychiatric comorbidity in SD were severity of voice impairment and subjective assessment of "satisfaction with health". As a limitation, the severity of voice impairment in patients with SD was nearly twice as high, and their illness had lasted nearly twice as long. CONCLUSIONS: We found a high prevalence of psychiatric comorbidity in patients with SD. The significant correlation between current psychiatric comorbidity and the extent of voice pathology may point to an especially strong interaction between somatic and psychiatric complaints in SD.
Resumo:
PURPOSE: To evaluate multislice spiral computed tomography (MSCT) and magnetic resonance imaging (MRI) findings in hanging and manual strangulation cases and compare them with forensic autopsy results. MATERIALS AND METHODS: Postmortem MSCT and MRI of nine persons who died from hanging or manual strangulation were performed. The neck findings were compared with those discovered during forensic autopsy. In addition, two living patients underwent imaging and clinical examination following severe manual strangulation and near-hanging, respectively. For evaluation, the findings were divided into "primary" (strangulation mark and subcutaneous desiccation (i.e., soft-tissue thinning as a result of tissue fluids being driven out by mechanical compression) in hanging, and subcutaneous and intramuscular hemorrhage in manual strangulation) and "collateral" signs. The Wilcoxon two-tailed test was used for statistical analysis of the lymph node and salivary gland findings. RESULTS: In hanging, the primary and most frequent collateral signs were revealed by imaging. In manual strangulation, the primary findings were accurately depicted, with the exception of one slight hemorrhage. Apart from a vocal cord hemorrhage, all frequent collateral signs could be diagnosed radiologically. Traumatic lymph node hemorrhage (P = 0.031) was found in all of the manual strangulation cases. CONCLUSION: MSCT and MRI revealed strangulation signs concordantly with forensic pathology findings. Imaging offers a great potential for the forensic examination of lesions due to strangulation in both clinical and postmortem settings.
Resumo:
Objective/Hypothesis: The purpose of this study was to examine respiratory function in a group of patients with muscle tension dysphonia (MTD) Design: Cross-sectional analytical study. Methods: Participants included 15 people with a diagnosis of MTD referred to speech pathology for management of their voice disorder, fiberoptic evidence of glottal or supraglottic constriction during phonation with or without posterior chink, or bowing combined and deviation in perceptual voice quality. A second group of 15 participants with no history of voice disorder served as healthy controls,. Baseline pulmonary function test measures included forced expiratory volume in the first second (FEV1), FVC, FEF25 to 75, FIF50, FEV1/FVC, ratio and FEF50/FIF50 ratio. Hypertonic saline challenge test measures included FEV1 and FIF50 after provocation, close response slope, and provocation dose. Results: Compared with healthy controls, participants with MTD demonstrated a higher prevalence of glottal constriction during inspiration after provocation with nebulized hypertonic saline as demonstrated by a reduction in FIF50 after the hypertonic saline challenge. There was no significant difference between the MTD and healthy control groups in baseline pulmonary function testing. Participants with MTD demonstrated a higher prevalence than healthy controls of abnormal glottic closure during inspiration similar to paradoxical vocal fold movement (PVFM). This suggests that they either had previously undiagnosed coexisting PVFM or that the condition of MTD could be expanded to include descriptions of aberrant glottic function during respiration. This study enhances the understanding of PVFM and MTD by combining research advances made in the fields of otolaryngology and respiratory medicine.
Resumo:
Background. In the treatment of differentiated thyroid cancer (DTC), in absence of enlarged lymph nodes, the role of routine central lymph node dissection (RCLD) remains controversial. The aim of this study is to analyze data resulting from total thyroidectomy (TT) not combined with RCLD in the treatment of DTC. Methods. We retrospectively evaluated the clinical records of 80 patients treated between January 1996 and December 2003 with TT without RCLND, in absence of suspected enlarged lymph nodes at preoperative ultrasonography and intraoperatively during neck exploration. In this series, 75 patients (93.7%) underwent radioiodine (RAI) ablation, followed by Thyroid Stimulating Hormone (TSH) suppression therapy. In case of locoregional lymph nodal recurrence, a central (VI) and ipsilateral (III-IV) selective lymph node dissection was performed. Results. Incidence of permanent hypoparathyroidism (iPTH < 10 pg/ml) and unilateral temporary vocal fold paralysis were respectively 2.55% and 2.55%. Locoregional recurrence, with positive cervical lymph nodes, after a 10.3 ± 4.7 years mean follow-up was observed in 3 patients (3.75%). They were submitted to a central (VI) and ipsilateral (III-IV) selective neck dissection without significant complications. Conclusions. In our series, TT not combined with RCLD was associated to a low locoregional recurrence rate, even if the lack of a control group treated with RCLD does not allow any generalized assumption. RCLD may be indicated in high risk patients, in whom lymph nodal recurrence is more frequent. More prospective randomized studies are needed to better define the role of RCLD and postoperative radioiodine ablation.
Resumo:
Introduction: Amyloidosis is used to describe a range of disorders deined by extracellular deposition of abnormal protein ibrils. The larynx is the most common site of localized amyloidosis in the head and neck region and constitutes less than 1% of benign laryngeal lesions. Hoarseness is the most common symptom. Objective: Prospective clinical evaluation of patients with localized laryngeal amyloidosis. Clinical cases: Presented are 4 cases of patients with localized laryngeal amyloidosis who were treated at the Otolaryngology and Head and Neck Surgery Department at the “Dr. José Eleuterio González” University Hospital in Monterrey, Mexico. Three patients underwent phonomicrosurgery by direct microlaryngoscopy with the removal of the amyloid implantation using a cold knife excision with great results. In each patient the major site of involvement was the supraglottis with a small focus on the false vocal cord. A medical work-up, including a complete blood count (CBC), a basic metabolic panel, urinalysis, liver function test, chest X-ray and physical examination were performed to rule out the presence of systemic disease; no amyloidosis or signs of systemic disease were found. Congo red staining conirms the diagnosis of amyloidosis in all surgical specimens. Conclusions: In laryngeal amyloidosis, the treatment should be directed toward the improvement of the voice and the maintenance of the airway.
Resumo:
Mode of access: Internet.
Resumo:
Paralysis is a debilitating condition afflicting millions of people across the globe, and is particularly deleterious to quality of life when motor function of the legs is severely impaired or completely absent. Fortunately, spinal cord stimulation has shown great potential for improving motor function after spinal cord injury and other pathological conditions. Many animal studies have shown stimulation of the neural networks in the spinal cord can improve motor ability so dramatically that the animals can even stand and step after a complete spinal cord transaction.
This thesis presents work to successfully provide a chronically implantable device for rats that greatly enhances the ability to control the site of spinal cord stimulation. This is achieved through the use of a parylene-C based microelectrode array, which enables a density of stimulation sites unattainable with conventional wire electrodes. While many microelectrode devices have been proposed in the past, the spinal cord is a particularly challenging environment due to the bending and movement it undergoes in a live animal. The developed microelectrode array is the first to have been implanted in vivo while retaining functionality for over a month. In doing so, different neural pathways can be selectively activated to facilitate standing and stepping in spinalized rats using various electrode combinations, and important differences in responses are observed.
An engineering challenge for the usability of any high density electrode array is connecting the numerous electrodes to a stimulation source. This thesis develops several technologies to address this challenge, beginning with a fully passive implant that uses one wire per electrode to connect to an external stimulation source. The number of wires passing through the body and the skin proved to be a hazard for the health of the animal, so a multiplexed implant was devised in which active electronics reduce the number of wires. Finally, a fully wireless implant was developed. As these implants are tested in vivo, encapsulation is of critical importance to retain functionality in a chronic experiment, especially for the active implants, and it was achieved without the use of costly ceramic or metallic hermetic packaging. Active implants were built that retained functionality 8 weeks after implantation, and achieved stepping in spinalized rats after just 8-10 days, which is far sooner than wire-based electrical stimulation has achieved in prior work.
Resumo:
Les lésions de la moelle épinière ont un impact significatif sur la qualité de la vie car elles peuvent induire des déficits moteurs (paralysie) et sensoriels. Ces déficits évoluent dans le temps à mesure que le système nerveux central se réorganise, en impliquant des mécanismes physiologiques et neurochimiques encore mal connus. L'ampleur de ces déficits ainsi que le processus de réhabilitation dépendent fortement des voies anatomiques qui ont été altérées dans la moelle épinière. Il est donc crucial de pouvoir attester l'intégrité de la matière blanche après une lésion spinale et évaluer quantitativement l'état fonctionnel des neurones spinaux. Un grand intérêt de l'imagerie par résonance magnétique (IRM) est qu'elle permet d'imager de façon non invasive les propriétés fonctionnelles et anatomiques du système nerveux central. Le premier objectif de ce projet de thèse a été de développer l'IRM de diffusion afin d'évaluer l'intégrité des axones de la matière blanche après une lésion médullaire. Le deuxième objectif a été d'évaluer dans quelle mesure l'IRM fonctionnelle permet de mesurer l'activité des neurones de la moelle épinière. Bien que largement appliquées au cerveau, l'IRM de diffusion et l'IRM fonctionnelle de la moelle épinière sont plus problématiques. Les difficultés associées à l'IRM de la moelle épinière relèvent de sa fine géométrie (environ 1 cm de diamètre chez l'humain), de la présence de mouvements d'origine physiologique (cardiaques et respiratoires) et de la présence d'artefacts de susceptibilité magnétique induits par les inhomogénéités de champ, notamment au niveau des disques intervertébraux et des poumons. L'objectif principal de cette thèse a donc été de développer des méthodes permettant de contourner ces difficultés. Ce développement a notamment reposé sur l'optimisation des paramètres d'acquisition d'images anatomiques, d'images pondérées en diffusion et de données fonctionnelles chez le chat et chez l'humain sur un IRM à 3 Tesla. En outre, diverses stratégies ont été étudiées afin de corriger les distorsions d'images induites par les artefacts de susceptibilité magnétique, et une étude a été menée sur la sensibilité et la spécificité de l'IRM fonctionnelle de la moelle épinière. Les résultats de ces études démontrent la faisabilité d'acquérir des images pondérées en diffusion de haute qualité, et d'évaluer l'intégrité de voies spinales spécifiques après lésion complète et partielle. De plus, l'activité des neurones spinaux a pu être détectée par IRM fonctionnelle chez des chats anesthésiés. Bien qu'encourageants, ces résultats mettent en lumière la nécessité de développer davantage ces nouvelles techniques. L'existence d'un outil de neuroimagerie fiable et robuste, capable de confirmer les paramètres cliniques, permettrait d'améliorer le diagnostic et le pronostic chez les patients atteints de lésions médullaires. Un des enjeux majeurs serait de suivre et de valider l'effet de diverses stratégies thérapeutiques. De telles outils représentent un espoir immense pour nombre de personnes souffrant de traumatismes et de maladies neurodégénératives telles que les lésions de la moelle épinière, les tumeurs spinales, la sclérose en plaques et la sclérose latérale amyotrophique.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Resumo:
Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.
Resumo:
Cervical compressive myelopathy is the most serious complication of cervical spondylosis or ossification of the posterior longitudinal ligament (OPLL) and the most frequent cause of spinal cord dysfunction. There is little information on the exact pathophysiological mechanism responsible for the progressive loss of neural tissue in the spinal cord of such patients. In this study, we used the spinal hyperostotic mouse (twy/twy) as a suitable model of human spondylosis, and OPLL to investigate the cellular and molecular changes in the spinal cord. Mutant twy/twy mouse developed ossification of the ligamentum flavum at C2-C3 and exhibited progressive paralysis.
Resumo:
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans. © 2014 Future Science Ltd.