929 resultados para Visual programming languages


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports on a replication of earlier studies into a possible hierarchy of programming skills. In this study, the students from whom data was collected were at a university that had not provided data for earlier studies. Also, the students were taught the programming language Python, which had not been used in earlier studies. Thus this study serves as a test of whether the findings in the earlier studies were specific to certain institutions, student cohorts, and programming languages. Also, we used a non–parametric approach to the analysis, rather than the linear approach of earlier studies. Our results are consistent with the earlier studies. We found that students who cannot trace code usually cannot explain code, and also that students who tend to perform reasonably well at code writing tasks have also usually acquired the ability to both trace code and explain code.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The portability and runtime safety of programs which are executed on the Java Virtual Machine (JVM) makes the JVM an attractive target for compilers of languages other than Java. Unfortunately, the JVM was designed with language Java in mind, and lacks many of the primitives required for a straighforward implementation of other languages. Here, we discuss how the JVM may be used to implement other object-oriented languages. As a practical example of the possibilities, we report on a comprehensive case study. The open source Gardens Point Component Pascal compiler compiles the entire Component Pascal language, a dialect of Oberon-2, to JVM bytecodes. This compiler achieves runtime efficiencies which are comparable to native-code implementations of procedural languages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The portability and runtime safety of programs which are executed on the Java Virtual Machine (JVM) makes the JVM an attractive target for compilers of languages other than Java. Unfortunately, the JVM was designed with language Java in mind, and lacks many of the primitives required for a straight forward implementation of other languages. Here, we discuss how the JVM may be used to implement other object oriented languages. As a practical example of the possibilities, we report on a comprehensive case study. The open source Gardens Point Component Pascal compiler compiles the entire Component Pascal language, a dialect of Oberon 2, to JVM bytecodes. This compiler achieves runtime efficiencies which are comparable to native code implementations of procedural languages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Managed execution frameworks, such as the.NET Common Language Runtime or the Java Virtual Machine, provide a rich environment for the creation of application programs. These execution environments are ideally suited for languages that depend on type-safety and the declarative control of feature access. Furthermore, such frameworks typically provide a rich collection of library primitives specialized for almost every domain of application programming. Thus, when a new language is implemented on one of these frameworks it becomes necessary to provide some kind of mapping from the new language to the libraries of the framework. The design of such mappings is challenging since the type-system of the new language may not span the domain exposed in the library application programming interfaces (APIs). The nature of these design considerations was clarified in the implementation of the Gardens Point Component Pascal (gpcp) compiler. In this paper we describe the issues, and the solutions that we settled on in this case. The problems that were solved have a wider applicability than just our example, since they arise whenever any similar language is hosted in such an environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PERWAPI is a component for reading and writing .NET PE-files. The name is a compound acronym for Program Executable – Reader/Writer – Application Programming Interface. The code was written by one of us (Diane Corney) with some contributions from some of the early users of the tool. PERWAPI is a managed component, written entirely in safe C#. The design of the writer part of the component is loosely based on Diane Corney’s previous PEAPI component. It is open source software, and is released under a “FreeBSD-like” license. The source may be downloaded from “http://plas.fit.qut.edu.au/perwapi/” As of the date of this document the code has facilities for reading and writing PEfiles compatible with the latest (beta-2) release of the ”Whidbey” version of .NET, that is, the Visual Studio 2005 framework. An invocation option allows earlier versions of the framework to be targeted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interactive development environments are making a resurgence. The traditional batch style of programming, edit -> compile -> run, is slowly being reevaluated by the development community at large. Languages such as Perl, Python and Ruby are at the heart of a new programming culture commonly described as extreme, agile or dynamic. Musicians are also beginning to embrace these environments and to investigate the opportunity to use dynamic programming tools in live performance. This paper provides an introduction to Impromptu, a new interactive development environment for musicians and sound artists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Component software has many benefits, most notably increased software re-use; however, the component software process places heavy burdens on programming language technology, which modern object-oriented programming languages do not address. In particular, software components require specifications that are both sufficiently expressive and sufficiently abstract, and, where possible, these specifications should be checked formally by the programming language. This dissertation presents a programming language called Mentok that provides two novel programming language features enabling improved specification of stateful component roles. Negotiable interfaces are interface types extended with protocols, and allow specification of changing method availability, including some patterns of out-calls and re-entrance. Type layers are extensions to module signatures that allow specification of abstract control flow constraints through the interfaces of a component-based application. Development of Mentok's unique language features included creation of MentokC, the Mentok compiler, and formalization of key properties of Mentok in mini-languages called MentokP and MentokL.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the emergence of multi-core processors into the mainstream, parallel programming is no longer the specialized domain it once was. There is a growing need for systems to allow programmers to more easily reason about data dependencies and inherent parallelism in general purpose programs. Many of these programs are written in popular imperative programming languages like Java and C]. In this thesis I present a system for reasoning about side-effects of evaluation in an abstract and composable manner that is suitable for use by both programmers and automated tools such as compilers. The goal of developing such a system is to both facilitate the automatic exploitation of the inherent parallelism present in imperative programs and to allow programmers to reason about dependencies which may be limiting the parallelism available for exploitation in their applications. Previous work on languages and type systems for parallel computing has tended to focus on providing the programmer with tools to facilitate the manual parallelization of programs; programmers must decide when and where it is safe to employ parallelism without the assistance of the compiler or other automated tools. None of the existing systems combine abstraction and composition with parallelization and correctness checking to produce a framework which helps both programmers and automated tools to reason about inherent parallelism. In this work I present a system for abstractly reasoning about side-effects and data dependencies in modern, imperative, object-oriented languages using a type and effect system based on ideas from Ownership Types. I have developed sufficient conditions for the safe, automated detection and exploitation of a number task, data and loop parallelism patterns in terms of ownership relationships. To validate my work, I have applied my ideas to the C] version 3.0 language to produce a language extension called Zal. I have implemented a compiler for the Zal language as an extension of the GPC] research compiler as a proof of concept of my system. I have used it to parallelize a number of real-world applications to demonstrate the feasibility of my proposed approach. In addition to this empirical validation, I present an argument for the correctness of the type system and language semantics I have proposed as well as sketches of proofs for the correctness of the sufficient conditions for parallelization proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The act of computer programming is generally considered to be temporally removed from a computer program's execution. In this paper we discuss the idea of programming as an activity that takes place within the temporal bounds of a real-time computational process and its interactions with the physical world. We ground these ideas within the con- text of livecoding -- a live audiovisual performance practice. We then describe how the development of the programming environment "Impromptu" has addressed our ideas of programming with time and the notion of the programmer as an agent in a cyber-physical system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The act of computer programming is generally considered to be temporally removed from a computer program’s execution. In this paper we discuss the idea of programming as an activity that takes place within the temporal bounds of a real-time computational process and its interactions with the physical world. We ground these ideas within the context of livecoding – a live audiovisual performance practice. We then describe how the development of the programming environment “Impromptu” has addressed our ideas of programming with time and the notion of the programmer as an agent in a cyber-physical system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The formal specification language LFC was designed to support formal specification acquisition. However, it is yet suited to be used as a meta-language for specifying programming language processing. This paper introduces LFC as a meta-language, and compares it with ASF+SDF, an algebraic specification formalism that can also be used to programming languages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.